
Perl 6 Introduction

Naoum Hankache
naoum@hankache.com

mailto:naoum@hankache.com

Table of Contents

1. Introduction

1.1. What is Perl 6

1.2. Jargon

1.3. Installing Perl 6

1.4. Running Perl 6 code

1.5. Editors

1.6. Hello World!

1.7. Syntax overview

2. Operators

3. Variables

3.1. Scalars

3.2. Arrays

3.3. Hashes

3.4. Types

3.5. Introspection

3.6. Scoping

3.7. Assignment vs. Binding

4. Functions and mutators

5. Loops and conditions

5.1. if

5.2. unless

5.3. with

5.4. for

5.5. given

5.6. loop

6. I/O

6.1. Basic I/O using the Terminal

6.2. Running Shell Commands

6.3. File I/O

6.4. Working with files and directories

7. Subroutines

7.1. Definition

7.2. Signature

7.3. Multiple dispatch

7.4. Default and Optional Arguments

8. Functional Programming

http://perl6intro.com/#_introduction
http://perl6intro.com/#_what_is_perl_6
http://perl6intro.com/#_jargon
http://perl6intro.com/#_installing_perl_6
http://perl6intro.com/#_running_perl_6_code
http://perl6intro.com/#_editors
http://perl6intro.com/#_hello_world
http://perl6intro.com/#_syntax_overview
http://perl6intro.com/#_operators
http://perl6intro.com/#_variables
http://perl6intro.com/#_scalars
http://perl6intro.com/#_arrays
http://perl6intro.com/#_hashes
http://perl6intro.com/#_types
http://perl6intro.com/#_introspection
http://perl6intro.com/#_scoping
http://perl6intro.com/#_assignment_vs_binding
http://perl6intro.com/#_functions_and_mutators
http://perl6intro.com/#_loops_and_conditions
http://perl6intro.com/#_if
http://perl6intro.com/#_unless
http://perl6intro.com/#_with
http://perl6intro.com/#_for
http://perl6intro.com/#_given
http://perl6intro.com/#_loop
http://perl6intro.com/#_i_o
http://perl6intro.com/#_basic_i_o_using_the_terminal
http://perl6intro.com/#_running_shell_commands
http://perl6intro.com/#_file_i_o
http://perl6intro.com/#_working_with_files_and_directories
http://perl6intro.com/#_subroutines
http://perl6intro.com/#_definition
http://perl6intro.com/#_signature
http://perl6intro.com/#_multiple_dispatch
http://perl6intro.com/#_default_and_optional_arguments
http://perl6intro.com/#_functional_programming

8.1. Functions are first-class citizens

8.2. Closures

8.3. Anonymous functions

8.4. Chaining

8.5. Feed Operator

8.6. Hyper operator

8.7. Junctions

8.8. Lazy Lists

9. Classes & Objects

9.1. Introduction

9.2. Encapsulation

9.3. Named vs. Positional Arguments

9.4. Methods

9.5. Class Attributes

9.6. Access Type

9.7. Inheritance

9.8. Multiple Inheritance

9.9. Roles

9.10. Introspection

10. Exception Handling

10.1. Catching Exceptions

10.2. Throwing Exceptions

11. Regular Expressions

11.1. Regex definition

11.2. Matching characters

11.3. Matching categories of characters

11.4. Unicode properties

11.5. Wildcards

11.6. Quantifiers

11.7. Match Results

11.8. Example

12. Perl 6 Modules

12.1. Using Modules

13. Unicode

13.1. Using Unicode

14. Parallelism, Concurrency and Asynchrony

14.1. Parallelism

http://perl6intro.com/#_functions_are_first_class_citizens
http://perl6intro.com/#_closures
http://perl6intro.com/#_anonymous_functions
http://perl6intro.com/#_chaining
http://perl6intro.com/#_feed_operator
http://perl6intro.com/#_hyper_operator
http://perl6intro.com/#_junctions
http://perl6intro.com/#_lazy_lists
http://perl6intro.com/#_classes_objects
http://perl6intro.com/#_introduction_2
http://perl6intro.com/#_encapsulation
http://perl6intro.com/#_named_vs_positional_arguments
http://perl6intro.com/#_methods
http://perl6intro.com/#_class_attributes
http://perl6intro.com/#_access_type
http://perl6intro.com/#_inheritance
http://perl6intro.com/#_multiple_inheritance
http://perl6intro.com/#_roles
http://perl6intro.com/#_introspection_2
http://perl6intro.com/#_exception_handling
http://perl6intro.com/#_catching_exceptions
http://perl6intro.com/#_throwing_exceptions
http://perl6intro.com/#_regular_expressions
http://perl6intro.com/#_regex_definition
http://perl6intro.com/#_matching_characters
http://perl6intro.com/#_matching_categories_of_characters
http://perl6intro.com/#_unicode_properties
http://perl6intro.com/#_wildcards
http://perl6intro.com/#_quantifiers
http://perl6intro.com/#_match_results
http://perl6intro.com/#_example
http://perl6intro.com/#_perl_6_modules
http://perl6intro.com/#_using_modules
http://perl6intro.com/#_unicode
http://perl6intro.com/#_using_unicode
http://perl6intro.com/#_parallelism_concurrency_and_asynchrony
http://perl6intro.com/#_parallelism

15. The community

http://perl6intro.com/#_the_community

This document is intended to give you a quick overview of the Perl 6
programming language.
For those who are new to Perl 6 it should get you up and running.

Some sections of this document reference other (more complete and accurate) parts of
the Perl 6 documentation. You should read them if you need more information on a
specific subject.

Throughout this document, you will find examples for most discussed topics. To better
understand them, take the time to reproduce all examples.

License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Contribution

If you would like to contribute to this document head over to:
http://github.com/hankache/perl6intro

Feedback

All feedback is welcomed:
naoum@hankache.com

http://creativecommons.org/licenses/by-sa/4.0/
http://github.com/hankache/perl6intro
mailto:naoum@hankache.com

1. Introduction

1.1. What is Perl 6

Perl 6 is a high-level, general-purpose, gradually typed language. Perl 6 is multi-
paradigmatic. It supports Procedural, Object Oriented and Functional programming.

Perl 6 motto:

TMTOWTDI (Pronounced Tim Toady): There is more than one way to do it.

Easy things should stay easy, hard things should get easier, and impossible things
should get hard.

1.2. Jargon

Perl 6: Is a language specification with a test suite.
Implementations that pass the specification test suite are considered Perl 6.
Rakudo: Is a compiler for Perl 6.
Rakudobrew: Is an installation manager for Rakudo.
Panda: Is a Perl 6 module installer.
Rakudo Star: Is a bundle that includes Rakudo, Panda, a collection Perl 6 modules and
documentation.

1.3. Installing Perl 6
Linux

1. Install Rakudobrew: https://github.com/tadzik/rakudobrew

2. Install Rakudo: Type the following command in the terminal rakudobrew build
moar

3. Install Panda: Type the following command in the terminal rakudobrew build-
panda

OSX

Follow the same steps listed for installing on Linux
OR
Install with homebrew: brew install rakudo-star

Windows

https://github.com/tadzik/rakudobrew

1. Download the latest installer (file with .MSI extension) from
http://rakudo.org/downloads/star/
If your system architecture is 32-bit, download the x86 file if it’s 64-bit download the
x86_64 file.

2. After installation add C:\rakudo\bin to your PATH

Docker

1. Get the official Docker image docker pull rakudo-star

2. Then run a container with the image docker run -it rakudo-star

1.4. Running Perl 6 code

Running Perl 6 code can be done using the REPL (Read-Eval-Print Loop).
Within the terminal, type perl6 , write your code and hit [Enter]

Alternatively, write your code in a file, save it and run it.
It is recommended that Perl 6 files have a .pl6 extension.
Run the file from the terminal using the following syntax: perl6 filename.pl6

The REPL is mostly used for trying a specific piece of code, typically a single line.
For programs with more than a single line it is recommended to store them in a file and
then run them.

!

Rakudo Star bundles a line editor that helps you get the most out of the
REPL.

If you installed plain Rakudo instead of Rakudo Star then you probably
don’t have line editing features enabled (using the up and down arrows
for history, left and right to edit input, TAB completion).
Consider running the following command and you shall be all set:

panda install Linenoise would work on Windows, Linux and
OSX

panda install Readline if you are on Linux and prefer the
Readline library

1.5. Editors

http://rakudo.org/downloads/star/

Since most of the time we will be writing and storing our Perl 6 programs in files, we
should have a decent text editor that recognizes Perl 6 syntax.

I personally use and recommend Atom (https://atom.io/). It is a modern text editor and
comes with Perl 6 syntax highlighting out of the box.
Perl6-fe (https://atom.io/packages/language-perl6fe) is an alternative Perl 6 syntax highlighter
for Atom, derived from the original package but with many bug fixes and additions.

Other people in the community also use Vim (http://www.vim.org/), Emacs
(https://www.gnu.org/software/emacs/) or Padre (http://padre.perlide.org/).

Recent versions of Vim ship with syntax highlighting out of the box. Emacs and Padre
will require installation of additional packages.

1.6. Hello World!

We shall begin with The hello world ritual.

that can also be written as:

1.7. Syntax overview

Perl 6 is free form: You are free (most of the time) to use any amount of whitespace.

Statements are typically a logical line of code, they need to end with a semicolon: say
"Hello" if True;

Expressions are a special type of statement that returns a value: 1+2 will return 3

Expressions are made of Terms and Operators.

Terms are:

Variables: A value that can be manipulated and changed.

Literals: A constant value like a number or a string.

say 'hello world';
PERL6

'hello world'.say;
PERL6

https://atom.io/
https://atom.io/packages/language-perl6fe
http://www.vim.org/
https://www.gnu.org/software/emacs/
http://padre.perlide.org/

Operators are classified into types:

Type Explanation Example

Prefix Before the term. ++1

Infix Between terms 1+2

Postfix After the term 1++

Circumfix Around the term (1)

Postcircumfix After one term, around
another

Array[1]

1.7.1. Identifiers

Identifiers are the name given to terms when you define them.

Rules:

They must start with an alphabetic character or an underscore.

They can contain digits (except the first character).

They can contain dashes or apostrophes (except the first and last character),
provided there’s an alphabetic character to the right side of each dash/apostrophe.

Valid Invalid

var1 1var

var-one var-1

var’one var'1

var1_ var1'

_var -var

Naming conventions:

Camel case: variableNo1

Kebab case: variable-no1

Snake case: variable_no1

You are free to name your identifiers as you like, but it is good practice to adopt one
naming convention consistently.

Using meaningful names will ease your (and others) programming life.
var1 = var2 * var3 is syntactically correct but its purpose is not evident.
monthly-salary = daily-rate * working-days would be a better way to name your
variables.

1.7.2. Comments

A comment is a piece of text ignored by the compiler and used as a note.

Comments are divided into 3 types:

Single line:

Embedded:

Multi line:

1.7.3. Quotes

Strings need to be delimited by either double quotes or single quotes.

Always use double quotes:

if your string contains an apostrophe.

if your string contains a variable that needs to be interpolated.

#This is a single line comment
PERL6

say #`(This is an embedded comment) "Hello World."
PERL6

=begin comment
This is a multi line comment.
Comment 1
Comment 2
=end comment

PERL6

say 'Hello World'; #Hello World
say "Hello World"; #Hello World
say "Don't"; #Don't
mymy $name = 'John Doe';
say 'Hello $name'; #Hello $name
say "Hello $name"; #Hello John Doe

PERL6

2. Operators
The below table lists the most commonly used operators.

Operator Type Description Example Result

+ Infix Addition 1 + 2 3

- Infix Subtraction 3 - 1 2

* Infix Multiplication 3 * 2 6

** Infix Power 3 ** 2 9

/ Infix Division 3 / 2 1.5

div Infix
Integer Division
(rounds down)

3 div 2 1

% Infix Modulo 7 % 4 3

%% Infix Divisibility
6 %% 4 False

6 %% 3 True

gcd Infix
Greatest common
denominator

6 gcd 9 3

lcm Infix
Least common
multiple

6 lcm 9 18

== Infix Equal 9 == 7 False

!= Infix Not equal 9 != 7 True

< Infix Less than 9 < 7 False

> Infix Greater than 9 > 7 True

<= Infix Less than or equal 7 <= 7 True

>= Infix
Greater than or
equal

9 >= 7 True

eq Infix String equal
"John" eq

"John"
True

ne Infix String not equal
"John" ne

"Jane"
True

= Infix Assignment my $var = 7

Assigns the

value of 7 to

the variable

$var

~ Infix
String
concatenation

9 ~ 7 97

"Hi " ~ "there" Hi there

x Infix String replication

13 x 3 131313

"Hello " x 3
Hello Hello

Hello

~~ Infix Smart match

++

Prefix Increment
my $var = 2;

++$var;

Increment the

variable by 1

and return the

result 3

Postfix Increment
my $var = 2;

$var++;

Return the

variable 2 and

then increment

it

--

Prefix Decrement
my $var = 2; --

$var;

Decrement the

variable by 1

and return the

result 1

Postfix Decrement
my $var = 2;

$var--;

Return the

variable 2 and

then decrement

it

+ Prefix

Coerce the
operand to a
numeric value

+"3" 3

+True 1

+False 0

- Prefix

Coerce the
operand to a
numeric value and
return the
negation

-"3" -3

-True -1

-False 0

? Prefix

Coerce the
operand to a
boolean value

?0 False

?9.8 True

?"Hello" True

?"" False

my $var; ?$var; False

my $var = 7; ?

$var;
True

! Prefix

Coerce the
operand to a
boolean value and
return the
negation

!4 False

.. Infix Range Constructor 0..5
Creates a range

from 0 to 5

..^ Infix Range Constructor 0..^5
Creates a range

from 0 to 4

^.. Infix Range Constructor 0^..5
Creates a range

from 1 to 5

^..^ Infix Range Constructor 0^..^5 Creates a range

from 1 to 4

^ Prefix Range Constructor ^5

Same as 0..^5

Creates a range

from 0 to 4

… ​ Infix
Lazy List
Constructor

0… ​9999
return the

elements only

if requested

| Prefix Flattening
|(0..5) (0 1 2 3 4 5)

|(0^..^5) (1 2 3 4)

" For the complete list of operators, including their precedence, go to
http://doc.perl6.org/language/operators

http://doc.perl6.org/language/operators

3. Variables
Perl 6 variables are classified into 3 categories: Scalars, Arrays and Hashes.

A sigil (Sign in Latin) is a character that is used as a prefix to categorize variables.

$ is used for scalars

@ is used for arrays

% is used for hashes

3.1. Scalars

A scalar holds one value or reference.

A specific set of operations can be done on a scalar, depending on the value it holds.

String

" For the complete list of methods applicable to Strings, see
http://doc.perl6.org/type/Str

Integer

#String
mymy $name = 'John Doe';
say $name;

#Integer
mymy $age = 99;
say $age;

PERL6

mymy $name = 'John Doe';
say $name.uc;
say $name.chars;
say $name.flip;

PERL6

JOHN DOE
8
eoD nhoJ

mymy $age = 17;
say $age.is-prime;

PERL6

http://doc.perl6.org/type/Str

" For the complete list of methods applicable to Integers, see
http://doc.perl6.org/type/Int

Rational Number

" For the complete list of methods applicable to Rational Numbers, see
http://doc.perl6.org/type/Rat

3.2. Arrays

Arrays are lists containing multiple values.

Many operations can be done on arrays as shown in the below example:

! The tilde ~ is used for string concatenation.

Script

True

mymy $age = 2.3;
say $age.numerator;
say $age.denominator;
say $age.nude;

PERL6

23
10
(23 10)

mymy @animals = ['camel','llama','owl'];
say @animals;

PERL6

http://doc.perl6.org/type/Int
http://doc.perl6.org/type/Rat

Output

Explanation

.elems returns the number of elements in an array.

.push() adds an element to the array.
We can access a specific element in the array by specifying its position @animal[0] .
.pop removes the last element from the array.
.splice(a,b) will remove the b elements that start at position a .

3.2.1. Fixed-size arrays

A basic array is declared as following:

The basic array can have indefinite length and thus is called auto-extending.
The array will accept any number of values with no restriction.

In contrast, we can also create fixed-size arrays.
These arrays can not be accessed beyond their defined size.

mymy @animals = ['camel','vicuña','llama'];
say "The zoo contains " ~ @animals.elems ~ " animals";
say "The animals are: " ~ @animals;
say "I will adopt an owl for the zoo";
@animals.push("owl");
say "Now my zoo has: " ~ @animals;
say "The first animal we adopted was the " ~ @animals[0];
@animals.pop;
say "Unfortunately the owl got away and we're left with: " ~ @animals;
say "We're closing the zoo and keeping one animal only";
say "We're going to let go: " ~ @animals.splice(1,2) ~ " and keep the " ~
@animals;

PERL6

The zoo contains 3 animals
The animals are: camel vicuña llama
I will adopt an owl for the zoo
Now my zoo has: camel vicuña llama owl
The first animal we adopted was the camel
Unfortunately the owl got away and we're left with: camel vicuña llama
We're closing the zoo and keeping one animal only
We're going to let go: vicuña llama and keep the camel

mymy @array;
PERL6

To declare an array of fixed size, specify its maximum number of elements in square
brackets immediately after its name:

This array will be able to hold a maximum of 3 values, indexed from 0 to 2.

You will not be able to add a fourth value to this array:

3.2.2. Multidimensional arrays

The arrays we saw until now are one-dimensional.
Fortunately, we can define multi-dimentional arrays in Perl 6.

This array is two-dimensional. The first dimension can have a maximum of 3 values
and the second dimension a maximum of 2 values.

mymy @array[3];
PERL6

mymy @array[3];
@array[0] = "first value";
@array[1] = "second value";
@array[2] = "third value";

PERL6

mymy @array[3];
@array[0] = "first value";
@array[1] = "second value";
@array[2] = "third value";
@array[3] = "fourth value";

PERL6

Index 3 for dimension 1 out of range (must be 0..2)

mymy @tbl[3;2];
PERL6

mymy @tbl[3;2];
@tbl[0;0] = 1;
@tbl[0;1] = "x";
@tbl[1;0] = 2;
@tbl[1;1] = "y";
@tbl[2;0] = 3;
@tbl[2;1] = "z";
say @tbl

PERL6

" For the complete Array reference, see http://doc.perl6.org/type/Array

3.3. Hashes
A Hash is a set of Key/Value pairs.

Another succinct way of filling the hash:

Some of the methods that can be called on hashes are:

Script

Output

Explanation

.push: (key ⇒ 'Value') adds a new key/value pair.

.kv returns a list containing all keys and values.

.keys returns a list that contains all keys.

.values returns a list that contains all values.
We can access a specific value in the hash by specifying its key %hash<key>

" For the complete Hash reference, see http://doc.perl6.org/type/Hash

mymy %capitals = ('UK','London','Germany','Berlin');
say %capitals;

PERL6

mymy %capitals = (UK => 'London', Germany => 'Berlin');
say %capitals;

PERL6

mymy %capitals = (UK => 'London', Germany => 'Berlin');
%capitals.push: (France => 'Paris');
say %capitals.kv;
say %capitals.keys;
say %capitals.values;
say "The capital of France is: " ~ %capitals<France>;

PERL6

(France Paris Germany Berlin UK London)
(France Germany UK)
(Paris Berlin London)
The capital of France is: Paris

http://doc.perl6.org/type/Array
http://doc.perl6.org/type/Hash

3.4. Types

In the previous examples, we did not specify what type of values the variables should
hold.

! .WHAT will return the type of value held in a variable.

As you can see in the above example, the type of value in $var was once (Str) and then
(Int).

This style of programming is called dynamic typing. Dynamic in the sense that
variables may contain values of Any type.

Now try running the below example:
Notice Int before the variable name.

It will fail and return this error message: Type check failed in assignment to $var;
expected Int but got Str

What happened is that we specified beforehand that the variable should be of type
(Int). When we tried to assign an (Str) to it, it failed.

This style of programming is called static typing. Static in the sense that variable types
are defined before assignment and cannot change.

Perl 6 is classified as gradually typed; it allows both static and dynamic typing.

mymy $var = 'Text';
say $var;
say $var.WHAT;

$var = 123;
say $var;
say $var.WHAT;

PERL6

mymy Int $var = 'Text';
say $var;
say $var.WHAT;

PERL6

Below is a list of the most commonly used types.
You will most probably never use the first two but they are listed for informational
purpose.

TypeType DescriptionDescription ExampleExample ResultResult

Mu
The root of the Perl 6 type

hierarchy

Any

Default base class for new

classes and for most built-in

classes

Cool

Value that can be treated as a

string or number

interchangeably

my Cool $var = 31;

say $var.flip; say

$var * 2;

13 62

Str String of characters

my Str $var =

"NEON"; say

$var.flip;

NOEN

Int Integer (arbitrary-precision) 7 + 7 14

Rat
Rational number (limited-

precision)
0.1 + 0.2 0.3

Bool Boolean !True False

3.5. Introspection

Introspection is the process of getting information about an object properties like its
type.
In one of the previous example we used .WHAT to return the type of the variable.

The type of a variable holding a value is correlated to its value.
The type of a strongly declared empty variable is the type with which it was declared.
The type of an empty variable that wasn’t strongly declared is (Any)
To clear the value of a variable, assign Nil to it.

3.6. Scoping

Before using a variable for the first time, it needs to be declared.

Several declarators are used in Perl 6, my is what we have been using so far in the
examples above.

The my declarator give the variable lexical scope. In other words, the variable will
only be accessible in the same block it was declared.

A block in Perl 6 is delimited by { } . If no block is found, the variable will be available
in the whole Perl script.

Since a variable is only accessible in the block where it is defined, the same variable
name can be redefined in another block.

mymy Int $var;
say $var.WHAT; # (Int)
mymy $var2;
say $var2.WHAT; # (Any)
$var2 = 1;
say $var2.WHAT; # (Int)
$var2 = "Hello";
say $var2.WHAT; # (Str)
$var2 = True;
say $var2.WHAT; # (Bool)
$var2 = Nil;
say $var2.WHAT; # (Any)

PERL6

mymy $var=1;
PERL6

{
 mymy Str $var = 'Text';
 say $var; #is accessible
}
say $var; #is not accessible, returns an error

PERL6

3.7. Assignment vs. Binding

We’ve seen in the previous examples, how to assign values to variables.
Assignment is done using the = operator.

We can change the value assigned to a variable:

Assignment

Output

On the other hand, we cannot change the value binded to a variable.
Binding is done using the := operator.

Binding

Output

{
 mymy Str $var = 'Text';
 say $var;
}
mymy Int $var = 123;
say $var;

PERL6

mymy Int $var = 123;
say $var;

PERL6

mymy Int $var = 123;
say $var;
$var = 999;
say $var;

PERL6

123
999

mymy Int $var := 123;
say $var;
$var = 999;
say $var;

PERL6

123
Cannot assign to an immutable value

Variables can also be binded to other variables:

" For more info on variables, see http://doc.perl6.org/language/variables

mymy $a;
mymy $b;
$a := $b;
$b = 7;
say $a;

PERL6

http://doc.perl6.org/language/variables

4. Functions and mutators
It is important to differentiate between functions and mutators.
Functions do not change the initial state of the object they were called on.
Mutators modify the state of the object.

Script

Output

Explanation

.push is a mutator, it changes the state of the array (#1)

.sort is a function, it returns a sorted array but doesn’t modify the state of the initial
array:

(#2) shows that it returned a sorted array.

(#3) shows that the initial array is still unmodified.

In order to enforce a function to act as a mutator, we use .= instead of . (#4) (Line 9
of the script)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

mymy @numbers = [7,2,4,9,11,3];

@numbers.push(99);
say @numbers; #1

say @numbers.sort; #2
say @numbers; #3

@numbers.=sort;
say @numbers; #4

PERL6

[7 2 4 9 11 3 99] #1
(2 3 4 7 9 11 99) #2
[7 2 4 9 11 3 99] #3
[2 3 4 7 9 11 99] #4

5. Loops and conditions
Perl 6 has a multitude of conditionals and looping constructs.

5.1. if

The code runs only if the condition has been met.

In Perl 6 we can invert the code and the condition.
Even if the code and the condition have been inverted, the condition is always
evaluated first.

If the condition is not met, we can still specify alternative blocks for execution using:

else

elsif

5.2. unless

The negated version of an if statement can be written using unless .

The following code:

mymy $age = 19;

ifif $age > 18 {
 say 'Welcome'
}

PERL6

mymy $age = 19;

say 'Welcome' ifif $age > 18;

PERL6

#run the same code for different values of the variable
mymy $number-of-seats = 9;

ifif $number-of-seats <= 5 {
 say 'I am a sedan'
} elsifelsif $number-of-seats <= 7 {
 say 'I am 7 seater'
} elseelse {
 say 'I am a van'
}

PERL6

can be written as:

Negation in Perl 6 is done using either ! or not .

unless (condition) is used instead of if not (condition) .

unless cannot have an else clause.

5.3. with

with behave like the if statement, but checks if the variable is defined.

If you run the code without assigning a value to the variable nothing should happen.

without is the negated version of with . You should be able to relate it to unless .

If the first with condition is not met, an alternate path can be specified using orwith .
with and orwith can be compared to if and elsif .

mymy $clean-shoes = False;

ifif not $clean-shoes {
 say 'Clean your shoes'
}

PERL6

mymy $clean-shoes = False;

unlessunless $clean-shoes {
 say 'Clean your shoes'
}

PERL6

mymy Int $var=1;

with $var {
 say 'Hello'
}

PERL6

mymy Int $var;

with $var {
 say 'Hello'
}

PERL6

5.4. for

The for loop iterates over multiple values.

Notice that we created an iteration variable $array-item in order to perform the
operation *100 on each array item.

5.5. given

given is the Perl 6 equivalent of the switch statement in other languages.

After a successful match, the matching process will stop.

Alternatively proceed will instruct Perl 6 to continue matching even after a successful
match.

5.6. loop

loop is another way of writing a for loop.

Actually loop is how for loops are written in C-family programming languages.

mymy @array = [1,2,3];

forfor @array -> $array-item {
 say $array-item*100
}

PERL6

mymy $var = 42;

givengiven $var {
 whenwhen 0..50 { say 'Less than 50'}
 whenwhen Int { say "is an Int" }
 whenwhen 42 { say 42 }
 defaultdefault { say "huh?" }
}

PERL6

mymy $var = 42;

givengiven $var {
 whenwhen 0..50 { say 'Less than 50';proceed}
 whenwhen Int { say "is an Int";proceed}
 whenwhen 42 { say 42 }
 defaultdefault { say "huh?" }
}

PERL6

Perl 6 belongs to the C-family languages.

" For more info on loops and conditions, see
http://doc.perl6.org/language/control

looploop (mymy $i=0; $i < 5; $i++) {
 say "The current number is $i"
}

PERL6

http://doc.perl6.org/language/control

6. I/O
In Perl 6, two of the most common Input/Output interfaces are the Terminal and Files.

6.1. Basic I/O using the Terminal

6.1.1. say

say writes to the standard output. It appends a new line at the end. In other words, the
following code:

will be written on 2 separate lines.

6.1.2. print

print on the other hand behave like say but doesn’t add a new line.

Try replacing say with print and compare both results.

6.1.3. get

get is used to capture input from the terminal.

When the above code runs, the terminal will be waiting for you to input your name.
Subsequently, it will greet you.

6.1.4. prompt

prompt is a combination of print and get .

The above example can be written like this:

say 'Hello Mam.';
say 'Hello Sir.';

PERL6

mymy $name;

say "Hi, what's your name?";
$name=get;

say "Dear $name welcome to Perl 6";

PERL6

6.2. Running Shell Commands

Two subroutines can be used to run shell commands:

run Runs an external command without involving a shell

shell Runs a command through the system shell. All shell meta characters are
interpreted by the shell, including pipes, redirects, environment variable
substitutions and so on

echo and ls are common shell keywords.
echo prints text to the terminal (the equivalent of print in Perl 6)
ls lists all files and folders in the current directory

6.3. File I/O

6.3.1. slurp

slurp is used to read data from a file.

Create a text file with the following content:

datafile.txt

6.3.2. spurt

spurt is used to write data to a file.

mymy $name = prompt("Hi, what's your name? ");

say "Dear $name welcome to Perl 6";

PERL6

mymy $name = 'Neo';
run 'echo', "hello $name";
shell "ls";

PERL6

John 9
Johnnie 7
Jane 8
Joanna 7

mymy $data = slurp "datafile.txt";
say $data;

PERL6

After running the above code, a new file named newdatafile.txt will be created. It will
contain the new scores.

6.4. Working with files and directories

Perl 6 can list the contents of a directory without running shell commands (using ls)
as seen in a previous example.

In addition to that you can create new directories and delete them.

mkdir creates a new directory.
rmdir delete an empty directory. Returns an error if not empty.

You can also check if the specified path exits, if it is a file or a directory:

In the directory where you will be running the below script, create an empty folder
folder123 and an empty pl6 file script123.pl6

mymy $newdata = "New scores:
Paul 10
Paulie 9
Paulo 11";

spurt "newdatafile.txt", $newdata;

PERL6

say dir; #List files and folders in the current directory
say dir "/Documents"; #List files and folders in the specified directory

PERL6

mkdir "newfolder";
rmdir "newfolder";

PERL6

say "script123.pl6".IO.e;
say "folder123".IO.e;

say "script123.pl6".IO.d;
say "folder123".IO.d;

say "script123.pl6".IO.f;
say "folder123".IO.f;

PERL6

IO.e checks if the directory/file exist.
IO.f checks if the path is a file.
IO.d checks if the path is a directory.

" For more info on I/O, see http://doc.perl6.org/type/IO

http://doc.perl6.org/type/IO

7. Subroutines

7.1. Definition

Subroutines (also called subs or functions) are a means of packaging a set of
functionality.

A subroutine definition begins with the keyword sub . After their definition, they can
be called by their handle.
Check out the below example:

The previous example showcased a subroutine that doesn’t require any input.

7.2. Signature

Many subroutines would require some input in order to work. That input is provided
by arguments. The number and type of arguments that this subroutine accepts is
called its signature.

The below subroutine accepts a string argument.

7.3. Multiple dispatch

It is possible to define multiple subroutines having the same name but different
signatures. When the subroutine is called, the runtime environment will decide which
version to use depending on the number and type of the supplied arguments. This type
of subroutines is defined the same way as normal subs with the exception of swapping
the sub keyword with multi .

subsub alien-greeting {
 say "Hello earthlings";
}

alien-greeting;

PERL6

subsub say-hello (Str $name) {
 say "Hello " ~ $name ~ "!!!!"
}
say-hello "Paul";
say-hello "Paula";

PERL6

7.4. Default and Optional Arguments

If a subroutine is defined to accept an argument, and we call it without providing it
with the required argument, it will fail.

Alternatively Perl 6 provides us the ability to define subroutines with:

Optional Arguments

Default Arguments

Optional arguments are defined by appending ? after the argument name.

If the user doesn’t supply an argument, it can default to a specific value.
This is done by assigning a value to the argument within the subroutine definition.

" For more info on subroutines and functions, see
http://doc.perl6.org/language/functions

multimulti greet($name) {
 say "Good morning $name";
}
multimulti greet($name, $title) {
 say "Good morning $title $name";
}

greet "Johnnie";
greet "Laura","Mrs.";

PERL6

subsub say-hello($name?) {
 with $name { say "Hello " ~ $name }
 elseelse { say "Hello Human" }
}
say-hello;
say-hello("Laura");

PERL6

subsub say-hello($name="Matt") {
 say "Hello " ~ $name;
}
say-hello;
say-hello("Laura");

PERL6

http://doc.perl6.org/language/functions

8. Functional Programming
In this chapter we will take a look at some of the functionality that facilitates
Functional Programming.

8.1. Functions are first-class citizens

Functions/subroutines are first-class citizens:

They can be passed as an argument

They can be returned from another function

They can be assigned to a variable

A great example to demonstrate this concept is the map function.
map is a higher order function, it accepts another function as an argument.

Script

Output

Explanation

We defined a subroutine called squared , it will take to the power of two any number
provided as argument.
Next, we used map , a higher order function and gave it two arguments, a subroutine
and an array.
The result is a list of all squared elements of the array.

Notice that when passing a subroutine as an argument, we need to append & to the
beginning of its name.

8.2. Closures

All code objects in Perl 6 are closures, which means they can reference lexical variables
from an outer scope.

mymy @array = <1 2 3 4 5>;
subsub squared($x) {
 $x ** 2
}
say map(&squared,@array);

PERL6

(1 4 9 16 25)

8.3. Anonymous functions

An anonymous function is also called a lambda.
An anonymous function is not bound to an identifier (it has no name).

Let’s rewrite the map example using an anonymous function

Notice that instead of declaring the subroutine and passing it as an argument to map ,
we defined it directly within.
The anonymous subroutine -> $x {$x ** 2} has no handle and cannot be called.

In Perl 6 parlance we call this notation a pointy block

A pointy block may also be used to assign functions to variables:

8.4. Chaining

In Perl 6, methods can be chained, you no longer have to pass the result of a method to
another one as an argument.

Lets consider that you are provided with an array of values. You are asked to return the
unique values of this array, sorted from biggest to smallest.

You might try to solve the problem by writing something close to this:

First we call the unique function on @array then we pass the result as an argument to
sort and then we pass the result of sorting to reverse .

In contrast with the above example, chaining methods is allowed in Perl 6.
The above example can be written as following, taking advantage of method chaining:

mymy @array = <1 2 3 4 5>;
say map(-> $x {$x ** 2},@array);

PERL6

mymy $squared = -> $x {
 $x ** 2
}
say $squared(9);

PERL6

mymy @array = <7 8 9 0 1 2 4 3 5 6 7 8 9 >;
mymy @final-array = reverse(sort(unique(@array)));
say @final-array;

PERL6

You can already see that chaining methods is easier on the eye.

8.5. Feed Operator

The feed operator, called pipe in some functional programming languages, yields yet a
better visualization of method chaining.

Forward Feed

Explanation

As you can see the flow of the method calls is top-down.

Backward Feed

Explanation

The backward feed is like the forward feed, but written in reverse.
The flow of the method calls is bottom-up.

8.6. Hyper operator

mymy @array = <7 8 9 0 1 2 4 3 5 6 7 8 9 >;
mymy @final-array = @array.unique.sort.reverse;
say @final-array;

PERL6

mymy @array = <7 8 9 0 1 2 4 3 5 6>;
@array ==> unique()
 ==> sort()
 ==> reverse()
 ==> mymy @final-array;
say @final-array;

PERL6

Start with `@array` then return a list of unique elements
 then sort it
 then reverse it
 then store the result in @final-array

mymy @array = <7 8 9 0 1 2 4 3 5 6>;
mymy @final-array-v2 <== reverse()
 <== sort()
 <== unique()
 <== @array;
say @final-array-v2;

PERL6

The hyper operator >>. will call a method on all elements of a list and return a list of
all results.

Using the hyper operator we can call methods already defined in Perl 6, e.g. is-prime
that tells us if a number is prime or not.
In addition we can define new subroutines and call them using the hyper operator. In
this case we have to append & before the name of the method. E.g. &is-even

This is very practical as it relieves us from writing a for loop to iterate over each
value.

8.7. Junctions

A junction is a logical superposition of values.

In the below example 1|2|3 is a junction.

The use of junctions usually triggers autothreading; the operation is carried out for
each junction element, and all the results are combined into a new junction and
returned.

8.8. Lazy Lists

A lazy list is a list that is lazily evaluated.
Lazy evaluation delays the evaluation of an expression until required, and avoids
repeating evaluations by storing results in a lookup table.

The benefits include:

Performance increase by avoiding needless calculations

The ability to construct potentially infinite data structures

mymy @array = <0 1 2 3 4 5 6 7 8 9 10>;
subsub is-even($var) { $var %% 2 };

say @array>>.is-prime;
say @array>>.&is-even;

PERL6

mymy $var = 2;
ifif $var == 1|2|3 {
 say "The variable is 1 or 2 or 3"
}

PERL6

The ability to define control flow

To build a lazy list we use the infix operator … ​
A lazy list has initial element(s), a generator and an endpoint.

Simple lazy list

The initial element is 1 and the endpoint is 10. No generator was defined so the default
generator is the successor (+1)
In other words this lazy list may return (if requested) the following elements (1, 2, 3, 4,
5, 6, 7, 8, 9, 10)

Infinite lazy list

This list may return (if requested) any integer between 1 and infinity, in other words
any integer number.

Lazy list built using a deduced generator

The initial elements are 0 and 2 and the endpoint is 10. No generator was defined, but
using the initial elements, Perl 6 will deduce that the generator is (+2)
This lazy list may return (if requested) the following elements (0, 2, 4, 6, 8, 10)

Lazy list built using a defined generator

In this example, we defined explicitly a generator enclosed in { }
This lazy list may return (if requested) the following elements (0, 3, 6, 9, 12)

mymy $lazylist = (1 ... 10);
say $lazylist;

PERL6

mymy $lazylist = (1 ... Inf);
say $lazylist;

PERL6

mymy $lazylist = (0,2 ... 10);
say $lazylist;

PERL6

mymy $lazylist = (0, { $_ + 3 } ... 12);
say $lazylist;

PERL6

#

When using an explicit generator, the endpoint must be one of the
values that the generator can return.
If we reproduce the above example with the endpoint being 10 instead
of 12, it will not stop. The generator jumps over the endpoint.

Alternatively you can replace 0 … ​ 10 with 0 … ​̂ * > 10
You can read it as: From 0 until the first value greater than 10
(excluding it)

This will not stop the generator

This will stop the generator

mymy $lazylist = (0, { $_ + 3 } ... 10);
say $lazylist;

PERL6

mymy $lazylist = (0, { $_ + 3 } ...^ * > 10);
say $lazylist;

PERL6

9. Classes & Objects
In the previous chapter, we learned how Perl 6 facilitates Functional Programming.
In this chapter we will take a look at Object Oriented programming in Perl 6.

9.1. Introduction

Object Oriented programming is one of the widely used paradigms nowadays.
An object is a set of variables and subroutines bundled together.
The variables are called attributes and the subroutines are called methods.
Attributes define the state and methods define the behavior of an object.

A class defines the structure of a set of objects.

In order to understand the relationship consider the below example:

There are 4 people present in a room objects ⇒ 4 people

These 4 people are humans class ⇒ Human

They have different names, age, sex and
nationality

attributes ⇒ name, age, sex, nationality

In object oriented parlance, we say that objects are instances of a class.

Consider the below script:

The class keyword is used to define a class.
The has keyword is used to define attributes of a class.
The .new() method is called a constructor. It creates the object as an instance of the
class it has been called on.

classclass Human {
 hashas $name;
 hashas $age;
 hashas $sex;
 hashas $nationality;
}

mymy $john = Human.new(name => 'John', age => 23, sex => 'M', nationality =>
'American');
say $john;

PERL6

In the above script, a new variable $john holds a reference to a new instance of
"Human" defined by Human.new() .
The arguments passed to the .new() method are used to set the attributes of the
underlying object.

A class can be given lexical scope using my :

9.2. Encapsulation

Encapsulation is an object oriented concept that bundles a set of data and methods
together.
The data (attributes) within an object should be private, in other words, accessible only
from within the object.
In order to access the attributes from outside the object we use methods that we call
accessors.

The below two scripts have the same result.

Direct access to the variable:

Encapsulation:

The method sayvar is an accessors. It let us access the value of the variable without
getting direct access to it.

Encapsulation is facilitated in Perl 6 with the use of twigils.
Twigils are secondary sigils. They come between the sigil and the attribute name.
Two twigils are used in classes:

mymy classclass Human {

}

PERL6

mymy $var = 7;
say $var;

PERL6

mymy $var = 7;
subsub sayvar {
 $var;
}
say sayvar;

PERL6

! is used to explicitly declare that the attribute is private.

. is used to automatically generate an accessor for the attribute.

By default, all attributes are private but it is a good habit to always use the ! twigil.

In line with what we said we should rewrite the above class as following:

Append to the script the following statement: say $john.age;
It will return the following error: Method 'age' not found for invocant of class
'Human'

The reason being that $!age is private and can only be used within the object. Trying
to access it outside the object will return an error.

Now replace has $!age with has $.age and see what will be the result of say
$john.age;

9.3. Named vs. Positional Arguments

In Perl 6, all classes inherit a default .new() constructor.
It can be used to create objects by providing it with arguments.
The default constructor can only be provided with named arguments.
If you consider the above example, you’ll remark that all the arguments supplied to
.new() are defined by name:

name ⇒ 'John'

age ⇒ 23

What if i do not want to supply the name of each attribute each time i want to create a
new object?
Then I need to create another constructor that accepts positional arguments.

classclass Human {
 hashas $!name;
 hashas $!age;
 hashas $!sex;
 hashas $!nationality;
}

mymy $john = Human.new(name => 'John', age => 23, sex => 'M', nationality =>
'American');
say $john;

PERL6

The constructor that accepts positional arguments need to be defined as seen above.

9.4. Methods

9.4.1. Introduction

Methods are the subroutines of an object.
Like subroutines, they are a means of packaging a set of functionality, they accept
arguments, have a signature and can be defined as multi.

Methods are defined using the method keyword.
In normal circumstances, methods are required to perform some sort of action on the
objects' attributes. This enforces the concept of encapsulation. Object attributes can
only be manipulated from within the object using methods. The outside world, can only
interact with the object methods, and has no access to its attributes.

classclass Human {
 hashas $.name;
 hashas $.age;
 hashas $.sex;
 hashas $.nationality;
 #new constructor that overrides the default one.
 methodmethod new ($name,$age,$sex,$nationality) {
 selfself.bless(:$name,:$age,:$sex,:$nationality);
 }
}

mymy $john = Human.new('John',23,'M','American');
say $john;

PERL6

Once methods are defined within a class, they can be called on an object using the dot
notation:
object . method or as in the above example: $john.assess-eligibility

Within the definition of a method, if we need to reference the object itself to call
another method we use the self keyword.

Within the definition of a method, if we need to reference an attribute we use ! even if
it was defined with .
The rationale being that what the . twigil does is declare an attribute with ! and
automate the creation of an accessor.

In the above example if self.age < 21 and if $!age < 21 would have the same
effect, although they are technically different:

self.age calls the .age method (accessor)
Can be written alternatively as $.age

$!age is a direct call to the variable

9.4.2. Private methods

Normal methods can be called on objects from outside the class.

classclass Human {
 hashas $.name;
 hashas $.age;
 hashas $.sex;
 hashas $.nationality;
 hashas $.eligible;
 methodmethod assess-eligibility {
 ifif selfself.age < 21 {
 $!eligible = 'No'
 } elseelse {
 $!eligible = 'Yes'
 }
 }

}

mymy $john = Human.new(name => 'John', age => 23, sex => 'M', nationality =>
'American');
$john.assess-eligibility;
say $john.eligible;

PERL6

Private methods are methods that can only be called from within the class.
A possible use case would be a method that calls another one for specific action. The
method that interfaces with the outside world is public while the one referenced should
stay private. We do not want users to call it directly, so we declare it as private.

The declaration of a private method requires the use of the ! twigil before its name.
Private methods are called with ! instead of .

9.5. Class Attributes

Class attributes are attributes that belong to the class itself and not to its objects.
They can be initialized during definition.
Class attributes are declared using my instead of has .
They are called on the class itself instead of its objects.

9.6. Access Type

Until now all the examples that we’ve seen, used accessors to get information from the
objects' attributes.

What if we need to modify the value of an attribute?
We need to label it as read/write using the following keywords is rw

methodmethod !iamprivate {
 #code goes in here
}

methodmethod iampublic {
 selfself!iamprivate;
 #do additional things
}

PERL6

classclass Human {
 hashas $.name;
 mymy $.counter = 0;
 methodmethod new($name) {
 Human.counter++;
 selfself.bless(:$name);
 }
}
mymy $a = Human.new('a');
mymy $b = Human.new('b');

say Human.counter;

PERL6

By default, all attributes are declared as read only but you can explicitly do it using is
readonly

9.7. Inheritance

9.7.1. Introduction

Inheritance is yet another concept of object oriented programming.

When defining classes, soon enough we will realize that some attributes/methods are
common to many classes.
Should we duplicate code?
NO! We should use inheritance

Let’s consider we want to define two classes a class for Human beings and a class for
Employees.
Human beings have 2 attributes: name and age.
Employees have 4 attributes: name, age, company and salary

One would be tempted to define the classes as follow:

While technically correct the above piece of code is considered conceptually poor.

classclass Human {
 hashas $.name;
 hashas $.age isis rwrw;
}
mymy $john = Human.new(name => 'John', age => 21);
say $john.age;

$john.age = 23;
say $john.age;

PERL6

classclass Human {
 hashas $.name;
 hashas $.age;
}

classclass Employee {
 hashas $.name;
 hashas $.age;
 hashas $.company;
 hashas $.salary;
}

PERL6

A better way to write it would be as follow:

The is keyword defines inheritance.
In object oriented parlance we say Employee is a child of Human, and Human is a
parent of Employee.

All child classes inherit the attributes and methods of the parent class, so there is no
need to redefine them.

9.7.2. Overriding

Classes inherit all attributes and methods from their parent classes.
There are cases where we need the method in the child class to behave differently than
the one inherited.
To achieve this, we redefine the method in the child class.
This concept is called overriding.

In the below example, the method introduce-yourself is inherited by the Employee
class.

classclass Human {
 hashas $.name;
 hashas $.age;
}

classclass Employee isis Human {
 hashas $.company;
 hashas $.salary;
}

PERL6

Overriding works as follow:

Depending of which class the object is, the right method will be called.

9.7.3. Submethods

classclass Human {
 hashas $.name;
 hashas $.age;
 methodmethod introduce-yourself {
 say 'Hi i am a human being, my name is ' ~ selfself.name;
 }
}

classclass Employee isis Human {
 hashas $.company;
 hashas $.salary;
}

mymy $john = Human.new(name =>'John', age => 23,);
mymy $jane = Employee.new(name =>'Jane', age => 25, company => 'Acme', salary =>
4000);

$john.introduce-yourself;
$jane.introduce-yourself;

PERL6

classclass Human {
 hashas $.name;
 hashas $.age;
 methodmethod introduce-yourself {
 say 'Hi i am a human being, my name is ' ~ selfself.name;
 }
}

classclass Employee isis Human {
 hashas $.company;
 hashas $.salary;
 methodmethod introduce-yourself {
 say 'Hi i am a employee, my name is ' ~ selfself.name ~ ' and I work at: ' ~
selfself.company;
 }

}

mymy $john = Human.new(name =>'John',age => 23,);
mymy $jane = Employee.new(name =>'Jane',age => 25,company => 'Acme',salary => 4000);

$john.introduce-yourself;
$jane.introduce-yourself;

PERL6

Submethods are a type of method that are not inherited by child classes.
They are only accessible from the class they were declared in.
They are defined using the submethod keyword.

9.8. Multiple Inheritance

Multiple inheritance is allowed in Perl 6. A class can inherit from multiple other classes.

Output

Explanation

classclass bar-chart {
 hashas Int @.bar-values;
 methodmethod plot {
 say @.bar-values;
 }
}

classclass line-chart {
 hashas Int @.line-values;
 methodmethod plot {
 say @.line-values;
 }
}

classclass combo-chart isis bar-chart isis line-chart {
}

mymy $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
mymy $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

mymy $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

PERL6

Actual sales:
[10 9 11 8 7 10]
Forecast sales:
[9 8 10 7 6 9]
Actual vs Forecast:
[10 9 11 8 7 10]

The combo-chart class should be a able to hold two series, one for the actual values
plotted on bars, and another for forecast values plotted on a line.
This is why we defined it as a child of line-chart and bar-chart .
You should have noticed that calling the method plot on the combo-chart didn’t yield
the required result. Only one series was plotted.
Why did this happen?
combo-chart inherits from line-chart and bar-chart , and both of them have a
method called plot . When we call that method on combo-chart Perl 6 internals will
try to resolve the conflict by calling one of the inherited methods.

Correction

In order to behave correctly, we should have overridden the method plot in the
combo-chart .

classclass bar-chart {
 hashas Int @.bar-values;
 methodmethod plot {
 say @.bar-values;
 }
}

classclass line-chart {
 hashas Int @.line-values;
 methodmethod plot {
 say @.line-values;
 }
}

classclass combo-chart isis bar-chart isis line-chart {
 methodmethod plot {
 say @.bar-values;
 say @.line-values;
 }
}

mymy $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
mymy $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

mymy $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

PERL6

Output

9.9. Roles

Roles are somehow similar to classes in the sense that they are a collection of attributes
and methods.

Roles are declared with the keyword role and classes that wish to implement the role
can do so using the does keyword.

Lets rewrite the multiple inheritance example using roles:

Actual sales:
[10 9 11 8 7 10]
Forecast sales:
[9 8 10 7 6 9]
Actual vs Forecast:
[10 9 11 8 7 10]
[9 8 10 7 6 9]

Run the above script and you will see that results are the same.

By now you’re asking yourself; if roles behave like classes what’s their use?
To answer your question modify the first script used to showcase multiple inheritance,
the one where we forgot to override the plot method.

rolerole bar-chart {
 hashas Int @.bar-values;
 methodmethod plot {
 say @.bar-values;
 }
}

rolerole line-chart {
 hashas Int @.line-values;
 methodmethod plot {
 say @.line-values;
 }
}

classclass combo-chart does bar-chart does line-chart {
 methodmethod plot {
 say @.bar-values;
 say @.line-values;
 }
}

mymy $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
mymy $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

mymy $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

PERL6

Output

Explanation

If multiple roles are applied to the same class, and a conflict arises, a compile-time
error will be thrown.
This is a much safer approach than multiple inheritance where conflicts are not
considered errors and are simply resolved at runtime.

Roles will warn you that there’s a conflict.

9.10. Introspection

Introspection is the process of getting information about an object properties like its
type, or its attributes or its methods.

rolerole bar-chart {
 hashas Int @.bar-values;
 methodmethod plot {
 say @.bar-values;
 }
}

rolerole line-chart {
 hashas Int @.line-values;
 methodmethod plot {
 say @.line-values;
 }
}

classclass combo-chart does bar-chart does line-chart {
}

mymy $actual-sales = bar-chart.new(bar-values => [10,9,11,8,7,10]);
mymy $forecast-sales = line-chart.new(line-values => [9,8,10,7,6,9]);

mymy $actual-vs-forecast = combo-chart.new(bar-values => [10,9,11,8,7,10],
 line-values => [9,8,10,7,6,9]);
say "Actual sales:";
$actual-sales.plot;
say "Forecast sales:";
$forecast-sales.plot;
say "Actual vs Forecast:";
$actual-vs-forecast.plot;

PERL6

===SORRY!===
Method 'plot' must be resolved by class combo-chart because it exists in multiple
roles (line-chart, bar-chart)

Introspection is facilitated by:

.WHAT returns the class from which the object has been created.

.^attributes returns a list containing all attributes of the objects.

.^methods returns all methods that can be called on the object.

.^parents returns all parent classes of the class the object belongs.

~~ is called the smart-match operator. It evaluates to True if the object is created
from the class it is being compared against or any of its inheritances.

classclass Human {
 hashas Str $.name;
 hashas Int $.age;
 methodmethod introduce-yourself {
 say 'Hi i am a human being, my name is ' ~ selfself.name;
 }
}

classclass Employee isis Human {
 hashas Str $.company;
 hashas Int $.salary;
 methodmethod introduce-yourself {
 say 'Hi i am a employee, my name is ' ~ selfself.name ~ ' and I work at: ' ~
selfself.company;
 }
}

mymy $john = Human.new(name =>'John',age => 23,);
mymy $jane = Employee.new(name =>'Jane',age => 25,company => 'Acme',salary => 4000);

say $john.WHAT;
say $jane.WHAT;
say $john.^attributes;
say $jane.^attributes;
say $john.^methods;
say $jane.^methods;
say $jane.^parents;
ifif $jane ~~ Human {say 'Jane is a Human'};

PERL6

10. Exception Handling

10.1. Catching Exceptions

Exceptions are a special behavior that happens at runtime when something goes
wrong.
We say that exceptions are thrown.

Consider the below script that runs correctly:

Output

Now consider this script that throws an exception:

Output

You should have remarked that whenever an error occurs (in this case assigning a
number to a string variable) the program will stop and other lines of code will not be
evaluated, even if correct.

Exception handling is the process of catching an exception that has been thrown in
order for the script to continue working.

mymy Str $name;
$name = "Joanna";
say "Hello " ~ $name;
say "How are you doing today?"

PERL6

Hello Joanna
How are you doing today?

mymy Str $name;
$name = 123;
say "Hello " ~ $name;
say "How are you doing today?"

PERL6

Type check failed in assignment to $name; expected Str but got Int
 in block <unit> at exceptions.pl6:2

Output

Exception handling is done by using a try-catch block.

The CATCH block can be defined the same way a given block is defined. This means
we can catch and handle differently many types of exceptions.

mymy Str $name;
trytry {
 $name = 123;
 say "Hello " ~ $name;
 CATCHCATCH {
 defaultdefault {
 say "Can you tell us your name again, we couldn't find it in the register.";
 }
 }
}
say "How are you doing today?";

PERL6

Can you tell us your name again, we couldn't find it in the register.
How are you doing today?

trytry {
 #code goes in here
 #if anything goes wrong, the script will enter the below CATCH block
 #if nothing goes wrong the CATCH block will be ignored
 CATCHCATCH {
 defaultdefault {
 #the code in here will be evaluated only if an exception has been thrown
 }
 }
}

PERL6

trytry {
 #code goes in here
 #if anything goes wrong, the script will enter the below CATCH block
 #if nothing goes wrong the CATCH block will be ignored
 CATCHCATCH {
 whenwhen X::AdHoc { #do something if an exception of type X::AdHoc is thrown }
 whenwhen X::IO { #do something if an exception of type X::IO is thrown }
 whenwhen X::OS { #do something if an exception of type X::OS is thrown }
 defaultdefault { #do something if an exception is thrown and doesn't belong to the
above types }
 }
}

PERL6

10.2. Throwing Exceptions

In contrast to catching exceptions, Perl 6 also allows you to explicitly throw exceptions.
Two types of exceptions can be thrown:

ad-hoc exceptions

typed exceptions

ad-hoc

typed

Ad-hoc exceptions are thrown using the die subroutine followed by the exception
message.

Typed exceptions are objects, hence the use of the .new() constructor in the above
example.
All typed exceptions descend from class X , below are a few examples:
X::AdHoc is the simplest exception type
X::IO is related to IO errors
X::OS is related to OS errors
X::Str::Numeric related to trying to coerce a string to a number

" For a complete list of exception types and their associated methods go
to http://doc.perl6.org/type.html and navigate to types starting with X.

mymy Int $age = 21;
diedie "Error !";

PERL6

mymy Int $age = 21;
X::AdHoc.new(payload => 'Error !').throw;

PERL6

http://doc.perl6.org/type.html

11. Regular Expressions
A regular expression, or regex is a sequence of characters that is used for pattern
matching.
The easiest way to understand it is to think of it as a pattern.

In this example, the smart match operator ~~ is used to check if a string
(enlightenment) contains the word (light).
"Enlightenment" is matched against a regex m/ light /

11.1. Regex definition

A regular expression can be defined as follows:

/light/

m/light/

rx/light/

Unless specified explicitly, white space is irrelevant, m/light/ and m/ light / are the
same.

11.2. Matching characters

Alphanumeric characters and the underscore _ are written as is.
All other characters have to be escaped using a backslash or surrounded by quotes.

Backslash

Single quotes

ifif 'enlightenment' ~~ m/ light / {
 say "enlightenment contains the word light";
}

PERL6

ifif 'Temperature: 13' ~~ m/ \: / {
 say "The string provided contains a colon :";
}

PERL6

ifif 'Age = 13' ~~ m/ '=' / {
 say "The string provided contains an equal character = ";
}

PERL6

Double quotes

11.3. Matching categories of characters

Characters can be classified into categories and we can match against them.
We can also match against the inverse of that category (everything except it):

Category Regex Inverse Regex

Word character
(letter, digit or
underscore)

\w Any character
except a word
character

\W

Digit \d Any character
except a digit

\D

Whitespace \s Any character
except a
whitespace

\S

Horizontal
whitespace

\h Any character
except a
horizontal
whitespace

\H

Vertical
whitespace

\v Any character
except a vertical
whitespace

\V

Tab \t Any character
except a Tab

\T

New line \n Any character
except a new line

\N

ifif 'name@company.com' ~~ m/ "@" / {
 say "This is a valid email address because it contains an @ character";
}

PERL6

11.4. Unicode properties

Matching against categories of characters as seen in the preceding section is
convenient.
That being said, a more systematic approach would be to use of Unicode properties.
Unicode properties are enclosed in <: >

11.5. Wildcards

Wildcards can also be used in a regex.

The dot . means any single character.

ifif "John123" ~~ / \d / {
 say "This is not a valid name, numbers are not allowed";
} elseelse {
 say "This is a valid name"
}
ifif "John-Doe" ~~ / \s / {
 say "This string contains whitespace";
} elseelse {
 say "This string doesn't contain whitespace"
}

PERL6

ifif "John123" ~~ / <:N> / {
 say "Contains a number";
} elseelse {
 say "Doesn't contain a number"
}
ifif "John-Doe" ~~ / <:Lu> / {
 say "Contains an uppercase letter";
} elseelse {
 say "Doesn't contain an upper case letter"
}
ifif "John-Doe" ~~ / <:Pd> / {
 say "Contains a dash";
} elseelse {
 say "Doesn't contain a dash"
}

PERL6

11.6. Quantifiers

Quantifiers come after a character and are used to specify how many times we are
expecting it.

The question mark ? means zero or one time.

The star * means zero or multiple times.

ifif 'abc' ~~ m/ a.c / {
 say "Match";
}
ifif 'a2c' ~~ m/ a.c / {
 say "Match";
}
ifif 'ac' ~~ m/ a.c / {
 say "Match";
 } elseelse {
 say "No Match";
}

PERL6

ifif 'ac' ~~ m/ a?c / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'c' ~~ m/ a?c / {
 say "Match";
 } elseelse {
 say "No Match";
}

PERL6

The + means at least one time.

11.7. Match Results

Whenever the process of matching a string against a regex is successful, the match
result is stored in a special variable $/

ifif 'az' ~~ m/ a*z / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'aaz' ~~ m/ a*z / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'aaaaaaaaaaz' ~~ m/ a*z / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'z' ~~ m/ a*z / {
 say "Match";
 } elseelse {
 say "No Match";
}

PERL6

ifif 'az' ~~ m/ a+z / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'aaz' ~~ m/ a+z / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'aaaaaaaaaaz' ~~ m/ a+z / {
 say "Match";
 } elseelse {
 say "No Match";
}
ifif 'z' ~~ m/ a+z / {
 say "Match";
 } elseelse {
 say "No Match";
}

PERL6

Script

Output

Explanation

$/ returns a Match Object (the string that matches the regex)
The following methods can be called on the Match Object:
.prematch returns the string preceding the match.
.postmatch returns the string following the match.
.from returns the starting position of the match.
.to returns the ending position of the match.

!

By default whitespace in a regex definition is irrelevant.
If we want to match against a regex containing whitespace we have to
do so explicitly.
The :s in the regex m/:s Perl 6/ forces whitespace to be considered
and not discarded.
Alternatively we could have written the regex as m/ Perl\s6 / and
used \s which as we saw earlier is a placeholder for whitespace.
If a regex contains more than a single whitespace, using :s becomes
more effective in contrast with using \s for each and every
whitespace.

11.8. Example

Lets check if an email is valid or not.
For the sake of this example we will assume that a valid email address is formed as
following:

ifif 'Rakudo is a Perl 6 compiler' ~~ m/:s Perl 6/ {
 say "The match is: " ~ $/;
 say "The string before the match is: " ~ $/.prematch;
 say "The string after the match is: " ~ $/.postmatch;
 say "The matching string starts at position: " ~ $/.from;
 say "The matching string ends at position: " ~ $/.to;
}

PERL6

The match is: Perl 6
The string before the match is: Rakudo is a
The string after the match is: compiler
The matching string starts at position: 12
The matching string ends at position: 18

first name [dot] last name [at] company [dot] (com/org/net)

#
The regex used in this example for email validation is not very accurate.
Its sole purpose is to demonstrate regex functionality in Perl 6.
Do not use it as-is in production.

Script

Output

john.doe@perl6.org is a valid email

Explanation

<:L> matches a single letter
<:L>+ matches a single letter or more
\. matches a single [dot] character
\@ matches a single [at] character
<:L+:N> matches a letter and a number
<:L+:N>+ matches one or more (letters and numbers)

The regex can be decomposed as following:

first name <:L>+

[dot] \.

last name <:L>+

[at] \@

company name <:L+:N>+

[dot] \.

com/org/net <:L>+

Alternatively a regex can be broken down into multiple named regexes

mymy $email = 'john.doe@perl6.org';
mymy $regex = / <:L>+\.<:L>+\@<:L+:N>+\.<:L>+ /;

ifif $email ~~ $regex {
 say $/ ~ " is a valid email";
} elseelse {
 say "This is not a valid email";
}

PERL6

A named regex is defined using the following syntax: my regex regex-name { regex
definition }

A named regex can be called using the following syntax: <regex-name>

" For more info on regexes, see http://doc.perl6.org/language/regexes

mymy $email = 'john.doe@perl6.org';
mymy regexregex many-letters { <:L>+ };
mymy regexregex dot { \. };
mymy regexregex at { \@ };
mymy regexregex many-letters-numbers { <:L+:N>+ };

ifif $email ~~ / <many-letters> <dot> <many-letters> <at> <many-letters-numbers>
<dot> <many-letters> / {
 say $/ ~ " is a valid email";
} elseelse {
 say "This is not a valid email";
}

PERL6

http://doc.perl6.org/language/regexes

12. Perl 6 Modules
Perl 6 is a general purpose programming language. It can be used to tackle a multitude
of tasks including: text manipulation, graphics, web, databases, network protocols etc.

Reusability is a very important concept whereby programmers don’t have to reinvent
the wheel each time they want to do a new task.

Perl 6 allows the creation and redistribution of modules. Each module is a packaged set
of functionality that can be reused once installed.

Panda is a module management tool that comes with Rakudo.

To install a specific module, type the below command in your terminal:

panda install "module name"

" The Perl 6 modules directory can be found on: http://modules.perl6.org/

12.1. Using Modules

MD5 is a cryptographic hash function that produces a 128-bit hash value.
MD5 has a variety of applications of which encryption of passwords stored in a
database. When a new user registers, their credentials are not stored as plain text but
rather hashed. The rationale behind this is that if the DB gets compromised, the attacker
will not be able to know what the passwords are.

Lets say you need a script that generates the MD5 hash of a password in preparation for
storing it in the DB.

Luckily there’s a Perl 6 module that already implemented the MD5 algorithm. Lets
install it:
panda install Digest::MD5

Now run the below script:

http://modules.perl6.org/

In order to run the md5_hex() function that creates hashes, we need to load the
required module.
The use keyword loads the module for use in the script.

#

In practice MD5 hashing alone is not sufficient, because it is prone to
dictionary attacks.
It should be combined with a salt
https://en.wikipedia.org/wiki/Salt_(cryptography)
(https://en.wikipedia.org/wiki/Salt_(cryptography)).

useuse Digest::MD5;
mymy $password = "password123";
mymy $hashed-password = Digest::MD5.new.md5_hex($password);

say $hashed-password;

PERL6

https://en.wikipedia.org/wiki/Salt_(cryptography)

13. Unicode
Unicode is a standard for encoding and representing text, that caters for most writing
systems in the world.
UTF-8 is a character encoding capable of encoding all possible characters, or code
points, in Unicode.

Characters are defined by a:
Grapheme: Visual representation.
Code point: A number assigned to the character.

13.1. Using Unicode
Lets look at how we can output characters using Unicode

The above 3 lines showcase different ways of building a character:

1. Writing the character directly (grapheme)

2. Using \x and the code point

3. Using \c and the code point name

Now lets output a smiley

Another example combining two code points

The letter á can be written:

using its unique code point \x00e1

or as a combination of the code points of a and acute \x0061\x0301

say "a";
say "\x0061";
say "\c[LATIN SMALL LETTER A]";

PERL6

say "☺";
say "\x263a";
say "\c[WHITE SMILING FACE]";

PERL6

say "á";
say "\x00e1";
say "\x0061\x0301";
say "\c[LATIN SMALL LETTER A WITH ACUTE]";

PERL6

Some of the methods that can be used:

Output

NFC returns the unique code point.
NFD decomposes the character and return the code point of each part.
uniname returns the code point name.

Unicode letters can be used as identifiers:

say "á".NFC;
say "á".NFD;
say "á".uniname;

PERL6

NFC:0x<00e1>
NFD:0x<0061 0301>
LATIN SMALL LETTER A WITH ACUTE

mymy $Δ = 1;
$Δ++;
say $Δ;

PERL6

14. Parallelism, Concurrency and Asynchrony

14.1. Parallelism

Under normal circumstances, all tasks in a program run sequentially.
This might not be a problem unless what you’re trying to do is consuming a lot of time.

Naturally speaking Perl 6 has features that will enable you to run things in parallel.
At this stage, it is important to note that parallelism can mean one of two things:

Task Parallelism: Two (or more) independent expressions running in parallel.

Data Parallelism: A single expression iterating over a list of elements in parallel.

Lets begin with the latter.

14.1.1. Data Parallelism

Considering the above example:

We are only doing one operation @array.map({ is-prime $_ })
The is-prime subroutine is being called for each array element sequentially:
is-prime @array[0] then is-prime @array[1] then is-prime @array[2] etc.

Fortunately we can call is-prime on multiple array elements at the same time:

Notice the use of race in the expression. This method will enable parallel iteration of
the array elements.

After running both examples (with and without race), compare the time it took for
both scripts to complete.

mymy @array = (0..50000); #Array population
mymy @result = @array.map({ is-prime $_ }); #call is-prime for each array element
say now - INITINIT now; #Output the time it took for the
script to complete

PERL6

mymy @array = (0..50000); #Array population
mymy @result = @array.race.map({ is-prime $_ }); #call is-prime for each array
element
say now - INITINIT now; #Output the time it took to
complete

PERL6

!

race will not preserve the order of elements. If you wish to do, so use
hyper instead.

race

hyper

If you run both examples, you should notice that one is sorted and the
other is not.

14.1.2. Task Parallelism

Considering the above example:

1. We defined 2 arrays

2. applied a different operation for each array and stored the results

3. and checked if both results are the same

The script waits for @array1.map({is-prime($_ + 1)}) to finish
and then evaluates @array2.map({is-prime($_ - 1)})

Both operations applied to each array do not depend on each other.

Why not do both in parallel?

mymy @array = (1..1000);
mymy @result = @array.race.map({$_ + 1});
@result>>.say;

PERL6

mymy @array = (1..1000);
mymy @result = @array.hyper.map({$_ + 1});
@result>>.say;

PERL6

mymy @array1 = (0..49999);
mymy @array2 = (2..50001);

mymy @result1 = @array1.map({is-prime($_ + 1)});
mymy @result2 = @array2.map({is-prime($_ - 1)});

say @result1 == @result2;

say now - INITINIT now;

PERL6

Explanation

The start method evaluates the code and returns an object of type promise or
shortly a promise.
If the code is evaluated correctly, the promise will be kept.
If the code throws an exception, the promise will be broken.

The await method waits for a promise.
If it’s kept it will get the returned values.
If it’s broken it will get the exception thrown.

Check the time it took each script to complete.

#
Parallelism always adds a threading overhead. If that overhead is not
offset by gains in computational speed, the script will seem slower.
This is why, using race , hyper , start and await for fairly simple
scripts can actually slow them down.

mymy @array1 = (0..49999);
mymy @array2 = (2..50001);

mymy $promise1 = start @array1.map({$_ + 1});
mymy $promise2 = start @array2.map({$_ - 1});

mymy @result1 = await $promise1;
mymy @result2 = await $promise2;

say @result1 == @result2;

say now - INITINIT now;

PERL6

15. The community
Much discussion happens on the #perl6 IRC channel. This should be your go to place for
any enquiry:
http://perl6.org/community/irc

Stay tuned by reading blog posts that focus on Perl 6:
http://pl6anet.org/ is a Perl 6 blog aggregator.

Last updated 2015-12-30 23:01:24 EET

irc://irc.freenode.net/#perl6
http://perl6.org/community/irc
http://pl6anet.org/

