
Well House Consultants Samples Geometry Managers 2915

Geometry
Managers

A Tk Graphic User Interface comprises a number of component
elements known as widgets. Geometry managers allow the programmer to
control the layout of the widgets within the windows, and to specify how
the layout is to be changed should the widgets be of uneven size or if the
window is resized.

The grid geometry manager . 2916

Placing geometry. 2922

224

A sample Training Module from our course
WELL HOUSE CONSULTANTS LTD
404, The Spa • Melksham, Wiltshire SN12 6QL • United Kingdom
PHONE: 01225 708225 • FACSIMLE 01225 707126 • EMAIL: info@wellho.net
© 2004 Well House Consultants Ltd., all rights reserved • written by Graham J. Ellis

2916 Geometry Managers Well House Consultants, Ltd.

T218

Widgets are arranged in frames by geometry managers:
• The pack geometry manager packs the widgets in from one (or more) of the sides,

with the widgets expanding to fill the available width or height if that's called for.
• The grid geometry manager creates a row and column layout rather like a table,
• For exact placement (by position, with specified size), you can use the place

geometry manager. You'll probably only want to use this in a few special situations
as it can become very long-winded.
All three window managers arrange widgets in frames, and in all three cases those

frames can be other frames.

Figure 1006 Counting the number of

accesses from a particular client to a

server computer224.1 The grid geometry manager

Let's count the number of accesses from a particular
client to a server computer, and lay out the results in a nice
table, as shown in Figure 1006.
while {[set line [gets $fhandle]] >0} {

 set hitlist [split $line]

 set hostname [lindex $hitlist 0]

 if {[info exists counter($hostname)]} {

 incr counter($hostname)

 } else {

 set counter($hostname) 1

 }

}

foreach host [lsort [array names counter]] {

 label .host_$host -text $host

 label .count_$host -text $counter($host)

 grid .host_$host .count_$host

 }

label .final -text " "

button .last -text "done" -command exit

grid .final .last

Yes, that's it! Let's look at the Tk code in that:

 label .host_$host -text $host
Create a label widget for each host. By using the name of a variable as part of the

widget name, we're able to come up with as many widgets as we need all on simple
variables - no need to switch to arrays which would give problems when we came to
look at the corresponding command.

 label .count_$host -text $counter($host)
That's another label which is also host-name-related, this time holding the count

of the number of hits from the particular computer.

After we've created each row of widgets, we'll pass them across to the grid layout
manager so that it can (in due course) display them:
 grid .host_$host .count_$host
The code above is part of a loop in our program, once around for each host. At

the end, we want to add a final line which has an exit button on the right.

Well House Consultants Samples Geometry Managers 2917

Chapter 224

Here's the code for that final row of buttons:
label .final -text " "

button .last -text "done" -command exit

grid .final .last

Figure 1007 Taking the last example

and colouring each of the cells (left) and

the same example with the colours filled

in by -sticky (right)

Sizing and filling cells

 Let's take that last example and
colour each of our cells so that we
can see how our layout was put
together:

Why so much grey space? Because
each column must have the same
width on all the rows. The host
computer "localhost" is the widest
name, and the "done" button at the
bottom has controlled the width of
the second column.

The host names and number-of-
hits text all varied in size when
drawn as text, so we have a messy-
looking display - most of them are
in the middle of a sea of grey in
their grid cells.

With a grid widget, we can specify "sticky" parameters to indicate which side of the

cell we want the widget to go to:
N Top (North)
E Right (East)
W Left (West)
S Bottom (South)

and we can specify multiple letters too, right up to "news" to stick the widget to all
four sides.

2918 Geometry Managers Well House Consultants, Ltd.

T218

Here's the complete code:

#!/usr/bin/wish

Count accesses from a series of computers to a server

set fhandle [open seal_log r]

while {[set line [gets $fhandle]] >0} {

 set hitlist [split $line]

 set hostname [lindex $hitlist 0]

 if {[info exists counter($hostname)]} {

 incr counter($hostname)

 } else {

 set counter($hostname) 1

 }

}

set col 0

foreach host [lsort [array names counter]] {

 incr col

 set col [expr $col %3]

 set colname [lindex "lightblue Cyan White" $col]

 set colname2 [lindex "Red Pink Plum" $col]

 label .host_$host -text $host -bg $colname

 label .count_$host -text $counter($host) -bg $colname2

 grid .host_$host .count_$host -sticky news

 }

label .final -text " "

button .last -text "ok" -command exit

grid .final .last

Well House Consultants Samples Geometry Managers 2919

Chapter 224

Figure 1008 Starting the application

(left) and resizing (below)

Managing rows and columns

The grid command has rowconfigure and columnconfigure amongst its
options, which lets you make settings for whole rows or columns.

-pad lets you add padding to each cell in the row or column
-minsize lets you set a minimum size
-weight allows you to set a growth "weight" to rows and columns with a

positive value grow in proportion to those values when the
window is expanded.

grid size returns a list containing the number of rows and columns in your
grid.

Let's adjust the display and resize behaviour of our host access count.
Here's the changed code, all at the end of the application

grid columnconfigure . {0 1} -minsize 150

grid columnconfigure . 0 -weight 1

set rowsandcols [grid size .]

label .final -text " "

button .last -text "ok" -command exit

grid .final .last -sticky ns

grid rowconfigure . [lindex $rowsandcols 1] -weight 1

The only change to effect the initial display is the -minsize 150 on each
column. Note how the columnconfigure command can specify a list of column
numbers all at the same time. In essence, we've used this capability to call up column
widths which are (initially) identical. As they're a minimum rather than a fixed size,
we would be in trouble if the contents of a cell turned out to be over 150 pixels.

The second display is affected by the -weight setting on the first column. This
setting tells the grid manager to put otherwise-unallocated space into that column as
opposed to any other.

Similarly, the -weight 1 on the rowconfigure command asks for any spare
vertical space to be put into the last row (the "ok" button). We didn't bother to keep
count of the rows; we used grid size to find out, and we did so before we added
the last row to save us the bother of subtracting 1 from the number of rows to get the
highest index number!

2920 Geometry Managers Well House Consultants, Ltd.

T218

Figure 1009 Specifying rows and

columns

Cells that span several rows or columns

On a grid, you can specify explicit -row and -column options to place
information into specified rows and columns, and you can specify -rowspan and
 -columnspan to give the width of the widget in row and columns.
#!/usr/bin/wish

A table of tcl applications / programs

label .tl -text "Tcl\ntable" -bg black -fg yellow

label .graphics -text "Graphics" -bg bisque

label .interaction -text "Interaction\nAutomation?" -bg honeydew

label .y1 -text "yes" -bg lawngreen

label .y2 -text "yes" -bg lawngreen

label .n1 -text "no" -bg orangered

label .n2 -text "no" -bg orangered

label .nn -text "/usr/bin/tcl" -bg skyblue

label .yy -text "/usr/bin/expectk" -bg skyblue

label .ny -text "/usr/bin/wish" -bg yellow

label .yn -text "/usr/bin/expect" -bg yellow

grid .tl -row 0 -column 0 -rowspan 2 -columnspan 2 -sticky news

grid .graphics -row 0 -column 2 -columnspan 2 -sticky news

grid .interaction -row 2 -column 0 -rowspan 2 -sticky news

grid .n1 -row 1 -column 2 -sticky news

grid .y1 -row 1 -column 3 -sticky news

grid .n2 -row 2 -column 1 -sticky news

grid .y2 -row 3 -column 1 -sticky news

grid .nn -row 2 -column 2 -sticky news

grid .yy -row 3 -column 3 -sticky news

grid .yn -row 3 -column 2 -sticky news

grid .ny -row 2 -column 3 -sticky news

Well House Consultants Samples Geometry Managers 2921

Chapter 224

Figure 1010 A similar table using

alternative grid commands.

Yes, we did plan that out on a scrap of paper first!
There is an alternative using the grid command to specify multiple widgets per

row, adding in the special characters
^ to skip a column
- to skip a row
You can also leave a cell blank using "x"

#!/usr/bin/wish

A table of tcl applications / programs

label .tl -text "Tcl\ntable" -bg black -fg yellow

label .graphics -text "Graphics\nrequired?" -bg bisque

label .interaction -text "Interaction\nAutomation\nrequired?" -bg

honeydew

label .y1 -text "yes" -bg lawngreen

label .y2 -text "yes" -bg lawngreen

label .n1 -text "no" -bg orangered

label .n2 -text "no" -bg orangered

label .nn -text "/usr/bin/tcl" -bg skyblue

label .yy -text "/usr/bin/expectk" -bg skyblue

label .ny -text "/usr/bin/wish" -bg yellow

label .yn -text "/usr/bin/expect" -bg yellow

grid .tl - .graphics - -sticky news

grid ^ ^ .y1 .n1 -sticky news

grid .interaction .y2 .yy .yn -sticky news

grid ^ .n2 .ny .nn -sticky news

2922 Geometry Managers Well House Consultants, Ltd.

T218

Figure 1011 Using the place geometry

manager.

224.2 Placing geometry

If you want to explicitly place widgets in your frame, you can do so using the
place geometry manager. The code is precise, but long.

#!/usr/bin/wish

A table of tcl applications / programs

label .tl -text "Tcl\ntable" -bg black -fg yellow

label .graphics -text "Graphics" -bg bisque

label .interaction -text "Interaction\nAutomation?" -bg honeydew

label .y1 -text "yes" -bg lawngreen

label .y2 -text "yes" -bg lawngreen

label .n1 -text "no" -bg orangered

label .n2 -text "no" -bg orangered

label .nn -text "/usr/bin/tcl" -bg skyblue

label .yy -text "/usr/bin/expectk" -bg skyblue

label .ny -text "/usr/bin/wish" -bg yellow

label .yn -text "/usr/bin/expect" -bg yellow

place .tl -in . -x 0 -y 0 -relwidth 0.5 -relheight 0.5

place .graphics -in . -relx 0.5 -y 0 -relwidth 0.5 -relheight 0.25

place .interaction -in . -x 0 -rely 0.5 -relwidth 0.25 -relheight 0.5

place .n1 -in . -relx 0.5 -rely 0.25 -relwidth 0.25 -relheight 0.25

place .y1 -in . -relx 0.75 -rely 0.25 -relwidth 0.25 -relheight 0.25

place .y2 -in . -relx 0.25 -rely 0.5 -relwidth 0.25 -relheight 0.25

place .n2 -in . -relx 0.25 -rely 0.75 -relwidth 0.25 -relheight 0.25

place .nn -in . -relx 0.5 -rely 0.75 -relwidth 0.25 -relheight 0.25

place .yy -in . -relx 0.75 -rely 0.5 -relwidth 0.25 -relheight 0.25

place .yn -in . -relx 0.5 -rely 0.5 -relwidth 0.25 -relheight 0.25

place .ny -in . -relx 0.75 -rely 0.75 -relwidth 0.25 -relheight 0.25

Well House Consultants Samples Geometry Managers 2923

Chapter 224

Positions may be specified using absolute coordinates within the window (-x and
-y). We've only used these for the top left (0,0) as relative positioning. A proportion
of the way across the window, using -relx and -rely is much more flexible.

Similarly, widths may be specified using -width and -height if you're speci-
fying pixels, or -relwidth and -relheight if you're specifying proportions.

Let's interpret one example:

place .interaction -in . -x 0 -rely 0.5 -relwidth 0.25 -relheight 0.5

The widget called .interaction is to be placed in the root frame, inset 0 pixels
from the left hand side, and half way down the window. The place manager assumes
that you're telling it where to place the top left of the widget (unless you've also spec-
ified an anchor option). The widget will be a quarter of the width of the window, and
half its height.

2924 Geometry Managers Well House Consultants, Ltd.

T218

Exercise

	Geometry Managers
	224.1 The grid geometry manager
	224.2 Placing geometry

