
Well House Consultants Samples Regular Expressions – Extra Elements 511

Regular
Expressions –
Extra Elements

As well as matching a pattern, a regular expression can be used to filter
out part of a string. This is a very powerful feature, but then you'll also
need to learn about capture brackets, sparse and greedy matches, modifiers
and more.

Capturing matches . 512

Which match? . 514

Alternation . 516

Sparse matches . 517

Look around, ahead, behind. 518

Modifiers. 519

35

A sample Training Module from our course
WELL HOUSE CONSULTANTS LTD
404, The Spa • Melksham, Wiltshire SN12 6QL • United Kingdom
PHONE: 01225 708225 • FACSIMLE 01225 707126 • EMAIL: info@wellho.net
© 2004 Well House Consultants Ltd., all rights reserved • written by Graham J. Ellis

512 Regular Expressions – Extra Elements Well House Consultants, Ltd.

Q803

35.1 Capturing matches

It's fabulous that you can use a regular expression to check whether a string
includes a particular pattern, perhaps an ISBN number with four groups of digits
totalling 10 digits in length. But once you know that the match has been achieved,
you'll want to go on and make use of that ISBN number. It would be a shame to go
to all the sophistication of a regular expression match to identify that you had a match
if you then had to revert to low-level string handling to extract the part of the string
that matched, or the various parts of the match string that are of interest to you.

If you round brackets around a part of your regular expression, they have two
significances. Firstly, any count that follows the brackets is applied to the brackets,
and secondly the matching part is stored into matching variables that can be used
later in the matching process and perhaps (depending on the particular language and
function you're using) be saved for you.

Our sample program reports matches identified by brackets. If I look for words
ending with "fish", I get back true/false values:

Please enter a regular expression: \w+fish

Good ... let's match

Match, line 99: 192.168.200.71 swordfish

returned: 1

Match, line 104: 192.168.200.76 dogfish

returned: 1

Match, line 105: 192.168.200.77 catfish

returned: 1

Match, line 197: 192.168.200.168 macdonald donald cuttlefish scanhost #whc Original Mac laptop

returned: 1

Total of 4 matches to \w+fish

But if I use brackets, I can get back the letters before "fish":

Please enter a regular expression: (\w+)fish

Good ... let's match

Match, line 99: 192.168.200.71 swordfish

returned: sword

Match, line 104: 192.168.200.76 dogfish

returned: dog

Match, line 105: 192.168.200.77 catfish

returned: cat

Match, line 197: 192.168.200.168 macdonald donald cuttlefish scanhost #whc Original Mac laptop

returned: cuttle

Total of 4 matches to (\w+)fish

or even the whole word:

Please enter a regular expression: (\w+fish)

Good ... let's match

Match, line 99: 192.168.200.71 swordfish

returned: swordfish

Match, line 104: 192.168.200.76 dogfish

returned: dogfish

Match, line 105: 192.168.200.77 catfish

returned: catfish

Match, line 197: 192.168.200.168 macdonald donald cuttlefish scanhost #whc Original Mac laptop

returned: cuttlefish

Total of 4 matches to (\w+fish)

Well House Consultants Samples Regular Expressions – Extra Elements 513

Chapter 35

If you want to rematch a captured string , you can refer to \1, \2, etc. for the first
and second bracket, and so on:

Please enter a regular expression: (\w)o\1

Good ... let's match

Match, line 72: 192.168.200.44 bob blyth

returned: b

Match, line 96: 192.168.200.68 cockle

returned: c

Match, line 116: 192.168.200.88 cocker

returned: c

Match, line 175: 192.168.200.146 cocoa eddie

returned: c

Match, line 292: 192.168.200.248 dodo

returned: d

Total of 5 matches to (\w)o\1

In Perl, captured matches are also saved into variables $1, $2 and so on, after the
completion of the match, and in matches in PHP you may give an extra parameter to
your match function call. Note that if you specify brackets within brackets, the varia-
bles are assigned in the order of the (characters, and if you apply counts to brackets,
the last match to a bracket set will be saved. Thus:

Please enter a regular expression: ((m(\w)+)don\w+)

Good ... let's match

Match, line 197: 192.168.200.168 macdonald donald cuttlefish scanhost #whc Original Mac laptop

returned: macdonald mac c

Total of 1 matches to ((m(\w)+)don\w+)

Let's see a real example. This is a Perl program that matches ISBN numbers and
performs a series of checks. If the ISBN number has valid components, each is
printed out. Regular expressions are not well suited to calculate the check character,
so that's done with other code:

#!/usr/bin/perl

print "Please enter ISBN number: ";

chop ($isbn = <STDIN>);

if ($isbn !~ /^(\d-?){9}[0-9xX]$/) {

 die "Incorrect digit count for an ISBN\n";

 }

if (! (($gid,$pub,$book,$check) =

 ($isbn =~ /^(\d+)-(\d+)-(\d+)-([0-9xX])$/))) {

 die "Incorrect group count for an ISBN\n";

 }

print "Group id (country and region): $gid\n";

print "Publisher $pub\n";

print "Individual book number $book\n";

print "Check character entered $check\n";

$compressed = "$gidpubbook";

$runtot = 0;

for ($k=0,$f=10; $k<9; $k++,$f--) {

 $runtot += $f * substr($compressed,$k,1);

 }

514 Regular Expressions – Extra Elements Well House Consultants, Ltd.

Q803

$check_calc = (11 - $runtot % 11) % 11;

$check_calc = "X" if ($check_calc == 10);

print "\nCheck character calculated: $check_calc\n";

if ($check_calc eq uc($check)) {

 print "Test PASSED - a valid ISBN number\n";

} else {

 print "Test FAILED - Correct format, but checksum wrong\n";

 }

[localhost:~/q802] graham% perl isbn

Please enter ISBN number: 12345678

Incorrect digit count for an ISBN

[localhost:~/q802] graham% perl isbn

Please enter ISBN number: 0-596-00289-0

Group id (country and region): 0

Publisher 596

Individual book number 00289

Check character entered 0

Check character calculated: 0

Test PASSED - a valid ISBN number

[localhost:~/q802] graham% perl isbn

Please enter ISBN number: 0-596-00415-x

Group id (country and region): 0

Publisher 596

Individual book number 00415

Check character entered x

Check character calculated: X

Test PASSED - a valid ISBN number

[localhost:~/q802] graham% perl isbn

Please enter ISBN number: 0-595-55002-6

Group id (country and region): 0

Publisher 595

Individual book number 55002

Check character entered 6

Check character calculated: 9

Test FAILED - Correct format, but checksum wrong

[localhost:~/q802] graham%

|

Non greedy

Look aheads and look behinds

\A and \Z

35.2 Which match?

Let’s suppose that you’re using the regular expression:
\S+@\S+

to extract an email address from a line of text such as
You could try graham@wellho.net or wellho@aol.com perhaps.

What is the email address you want? graham@wellho.net, or wellho@aol.com? Why
not graham@w or o@ao, both of which match the pattern specified. In fact, there are
102 possible ways that the regular expression could match.

Well House Consultants Samples Regular Expressions – Extra Elements 515

Chapter 35

While you’re simply asking "does this string contain an email address?", the ques-
tion of which match is academic. But when you want to use the saved variable it
becomes significant. The rules to remember are:
d) The matching starts as far to the left as possible
e) The counts you have encountered so far are greedy (in other words "*" means "0

or more", but has a subtext "As many as possible")
So taking our email address match, of
\S+@\S+

to
You could try graham@wellho.net or wellho@aol.com perhaps.

f) Match to \S+ attempt starts at Y-o-u, and fails to find any suitable match to the
space after the "u". It backtracks character-by-character, trying to match the @
instead, but fails

g) Match to \S+ attempts to start at c-o-u-l-d and similarly fails, and attempts to start
at t-r-y and fails yet again

h) Match to \S+ attempts to start at g-r-a and it matches all the way to n-e-t, at which
point it fails because the following space character does not match either a non-
space or an @

i) This time, the backtracking steps back character-by-character until it gets to the @,
which matches against the @ in the regular expression as well as against the \S+

j) The @ matches exactly
k) Matching to the second \S+ proceeds from the w-e-l-l-h-o right through to the t of

n-e-t
l) Matching fails to match any further characters at this point, as the next character,

a space, fails to match against \S
m)The regular expression engine notes that it has matched every element of the

regular expression correctly but cannot successfully match any further, therefore it
accepts the match it has

\S+ matched graham
@ matched @
\S+ matched wellho.net

If you want to work out how a regular expression matches, you may wish to inter-
pret the expression into a diagram, a drawing of what is known as a "regular
expression engine" for processing your string. Here’s a diagram that matches against
the regular expression "fish":

Figure 194 Matching to the regular

expression "fish"

and here’s the diagram for our email address match:

Figure 195 Matching to an email

address

Where there’s a choice to be made on these diagrams:
1. The current situation is stored for possible backtracking
2. The uppermost path from the choice is fully explored
3. If the uppermost path fails, the next path (or lower most) is explored
4. If all possible paths fail, then the match fails as a whole

f

f

i

i

s

s

h

h

✓

non

\S +

@

@ \S

✓space
non

space

+

516 Regular Expressions – Extra Elements Well House Consultants, Ltd.

Q803

35.3 Alternation

Within a regular expression, you can use character groups to look for any one of a
series of characters. These are fundamental regular expression elements and you can
write a character group in square brackets, or using extended notations such as \p.

On other occasions, somewhat differently, you’ll want to be able to select one
string of characters (or sub-expression) or another. For example, you might want to
accept http or ftp; this is known as alternation, and is available in regular expressions
using the | (pipe) character. Thus:

http|ftp
By default, alteration makes the entire regular expressions to the left and right of

the | character into alternatives,thus:

Please enter a regular expression: ^195|bob

Good ... let's match

Match, line 72: 192.168.200.44 bob blyth

returned: 1

Match, line 303: 195.152.7.132 seal_h #=4

returned: 1

Total of 2 matches to ^195|bob

which means "starting with 195 or containing Bob":

Figure 196 Matching an alteration

You’ll often want to limit the scope of your alternation, which you can do using
round brackets:

Please enter a regular expression: ^(195|bob)

Good ... let's match

Match, line 303: 195.152.7.132 seal_h #=4

returned: 195

Total of 1 matches to ^(195|bob)

which is fine, once you appreciate that as a side effect you’ve also set the \1 match
variable. The diagram now looks like this:

Figure 197 Matching an alteration

You could always "program around" the unwanted capture brackets if you wanted
to, but most regular expression handlers also offer you a non-capturing bracket alter-
native, (?: through to).

✓

Assert 9Start 51

o bb

✓
9 51

o bb

Assert
Start

Well House Consultants Samples Regular Expressions – Extra Elements 517

Chapter 35

Thus:

Please enter a regular expression: ^(?:195|bob)

Good ... let's match

Match, line 303: 195.152.7.132 seal_h #=4

returned: 1

Total of 1 matches to ^(?:195|bob)

35.4 Sparse matches

Counts default to greedy matching. There’s a subtext to + that says "and match as
many characters as possible. Most of the time that turns out to be exactly what you
want. Look back to the earlier example in this module. Did you want to match the
whole of an email address rather that just a part of it?

In a small percentage of cases, this greedy match isn’t what you want. Consider
matching:

<(.+)>
against:

Use the i tag for <i>italic</i> text
and what gets captured into \1? Not simply the letter i as you would expect, but the
whole segment of the incoming string after the first < to the final >. In other words,

i>italic</i
The first solution to such an issue would be to limit the match within the brackets

to exclude the terminating character so our regular expression would become:
<([^>]+)>

This looks a bit ugly, but works very well in this case. With a more complex regular
expression, rewriting matches in this way could become impractical. You may prefer
to use the following sparse matches provided by most regular expression handlers:

*? 0 or more, but as few as possible
+? 1 or more, but as few as possible
?? 0 or 1, preferably 0
{2,6}? from 2 to 6, as few as possible
{5,}? 5 or more, as few as possible

Our tag match can now be re-written
<(.+?)>

and a diagram should look like:

Figure 198 Matching to a tag

as opposed to:

Figure 199 Matching to a tag

< ✓any
char >

< ✓any
char >

518 Regular Expressions – Extra Elements Well House Consultants, Ltd.

Q803

35.5 Look around, ahead, behind

In a regular expression match, you can specify individual characters of character
groups, and if you do, your match engine moves on past the characters concerned
before it starts matching the next element. You can also specify an assertion which
checks a particular condition, but does not move on.

Such assertions include:
^ at the start of a string
$ at the end of a string
\b at a word boundary

There are a few occasions that you might want to assert that the following character
must be one particular literal, or a character from a group, and you do not want to
move on over that character. Perhaps you want to hold it back for capture, for
example; such a (rare) form or match is known as a look ahead.

Example:
Let’s say that I have a line of the format:

01225 708225 (voice)
and I want to save the main phone number (in this case 708225) as one capture, and
the (voice) string as another capture. How to do it?

One possibility is to look for a series of digits, and then to do a look ahead asser-
tion that they’re going to be followed by space - (. Once that assertion has been met,
we’re then free to capture (re-match) the following characters into our special
variable.

A positive look ahead assertion is written (?= through to). In other words, we’re
looking ahead to check that we do match against a particular string, but that’s not a
consuming match:

Please enter a regular expression: (\d+)(?=\s\()\s(\S+)

Good ... let's match

Match, line 16: 01225 708225 (voice)

returned: 708225 (voice)

Match, line 17: 01225 707126 (fax)

returned: 707126 (fax)

Total of 2 matches to (\d+)(?=\s\()\s(\S+)

The full range of look ahead and look behind assertions:
(?= look ahead, must match to succeed
(?! look ahead, must not match to succeed
(?<= look behind, must match to succeed
(?<! look behind, must not match to succeed

Well House Consultants Samples Regular Expressions – Extra Elements 519

Chapter 35

35.6 Modifiers

There are times you'll wish to modify the overall behaviour of a regular expression
match, and such capabilities are provided by various languages outside the regular
expression itself.

Ignoring case.

In Perl, and also in Perl-style regular expressions in PHP, add an "i" modifier after
closing regular expression termination character.

In regular PHP (POSIX) matching, extra functions are provided with an additional
i; thus ereg to match and eregi to match ignoring case

In MySQL, fields that are defined as text are matched ignoring case, and fields that
are described as binary are matched case-significant.

Global matching

Perl's g modifier causes the matching to resume each time at the point that the
previous match left off, thus allowing a loop to iterate though all possible matches.
In a list context, all possible matches are returned in a single call.

PHP provides additional functions such as preg_match_all for global
matching.

Modifiers that fine tune individual regular expression elements

In Perl-style regular expressions:
s Causes . to match any character at all (by default, it fails to match to new line)
m Causes ^ and $ to match at embedded new line characters; by default, they

only match at the very beginning and very end of the string
x Causes any space characters within the regular expression to be treated as

comments rather than literal.
Finally, Perl's "o" modifier signals to the Perl compiler that the regular expression

will not be changed during any particular run of the program. This is useful if you're
including a variable within a regular expression to which you'll be matching a very
large number of times.

520 Regular Expressions – Extra Elements Well House Consultants, Ltd.

Q803

Exercise

