
Well House Consultants Samples Objects and Classes 733

Objects and
Classes

In Java, we place all our code in "classes". Each class contains one or

more named blocks of code known as methods, and the group of methods

provides all the functionality that's required to handle data (or objects) of

a particular type.

Using an instance of a class . 734

Writing your own class . 736

Enhancements to the basic class structure . 738

Naming conventions . 741

54

A sample Training Module from our course
WELL HOUSE CONSULTANTS LTD
404, The Spa • Melksham, Wiltshire SN12 6QL • United Kingdom
PHONE: 01225 708225 • FACSIMLE 01225 707126 • EMAIL: info@wellho.net
© 2004 Well House Consultants Ltd., all rights reserved • written by Graham J. Ellis

734 Objects and Classes Well House Consultants, Ltd.

J706

Java would be very limited if data could only be held in the eight different primitive
types of variables. Although they can form the fundamental building blocks, you
really want something much more. You want to be able to define your own data type,
create variables to contain data of that type, and then perform operations on the vari-
ables, secure in the knowledge that all of the operations are sensible for that type of
data.

54.1 Using an instance of a class

You declare a variable to be not an int or a double but, perhaps, a "Film":
Film Kids;
There you go, a variable that can contain a film, and the name of the variable is

"Kids".
Just like the declaration
int number;

tells Java that number is an int, but doesn't set any value into it, so the same thing
applies to our Kids variable. Let's put something into our Kids variable, which we'll
do by running a method that can be used for any variable of type Film.
Kids = new Film("Shrek",133);
"Create an object of type Film; the two parameters are ’Shrek’ and ’133’, and store

the Film into the variable called ’Kids’."
There's going to be a certain number of things that we can do on a variable of type

Film,1 and if we want to do those things we need to do them by method calls. For
example:
System.out.println("The kids are watching "+ Kids.getcalled());

will output
The kids are watching Shrek

This evening, the adults are going to watch "Road to Perdition" and the children
will be watching "Shrek". Let's put both films into a class, and see how much earlier
the adults will be through:

Figure 297 Running "Eve"

1 and we need it defined somewhere, but that's a story later in this module

bash-2.04$ java Eve

The kids are watching Shrek

The big kids are watching Road to Perdition

The adults will be through 16 minutes ahead

bash-2.04$

Well House Consultants Samples Objects and Classes 735

Chapter 54

And here's the class that we wrote:

public class Eve {

 public static void main(String [] args) {

 // Set up two film objects

 Film Kids;

 Film Adults;

 Kids = new Film("Shrek",133);

 Adults = new Film("Road to Perdition",117);

 System.out.println("The kids are watching "+

 Kids.getcalled());

 System.out.println("The big kids are watching "+

 Adults.getcalled());

 int before = Kids.getminutes() - Adults.getminutes();

 System.out.println("The adults will be through "+

 before+ " minutes ahead");

 }

}

Looks good. We've used two objects of type Film, set them up, called information
back, etc. As programmers of this application, we needed to know what methods we
could call in the Film class, and what the parameters were to the methods, but we
didn't need to know how the class works internally.

Chances are that the Film class is also in use by some other programmers and
applications. Good; there's no point in rewriting code, and there's no point in
everyone having to learn the low-level details about how to handle films. Provided
that the Film class was written and tested well and does what's needed, it's a building
block that has a very wide use.

Some detail of using an object

"new" is a reserved word in Java. When our program says "new Film" it's an
instruction for Java to set up the memory to hold everything about a film, and to pass
back some sort of variable1 through which the information can be later accessed.

The getcalled and getminutes methods are names that just happen to be
defined in class Film as methods that can be called on an object of type Film, and
the syntax for the call is objectname.method(). If the method has any extra
parameters, they'll be passed in within the round brackets as you can see (for example)
in the println calls. println is a method in just the same way that getcalled
is, it's just that println is a part of the standard library and getcalled isn't.

1 sometimes referred to as an instance

736 Objects and Classes Well House Consultants, Ltd.

J706

54.2 Writing your own class

In order for the application we've just looked at to work, someone had to write and
provide the Film class, not too hard as it's just another class:

public class Film {

 String called;

 int minutes;

 public Film (String title, int length) {

 called = title;

 minutes = length;

 }

 public int getminutes() {

 return minutes;

 }

 public String getcalled() {

 return called;

 }

 public void setminutes(int length) {

 minutes = length;

 }

 }

First, note there's no main method. The Film class isn't written to run as a stand-
alone application, so it doesn't need such a method. What does it have?

It has a method with the same name as the name of the class – "Film". By defini-
tion in Java, this is the constructor method that is run when the new keyword is
used on the class. The constructor does not have a return type specified like all the
other methods in this and previous examples.1

What information do we want to be able to store about each and every film object
that we create? In our simple example, the title and the length in minutes. If we were
to declare variables to grab this information within our constructor, those variables
would be lost as soon as our constructor finished running – a sorry state of affairs.
Instead, we have declared all the variables we want in each object at the very top of
the class:

String called;

int minutes;

For each object of type Film that we create, two new variables ("called" and
"minutes") will be created. When we call any of the other methods that we have
defined on the class, it will choose which called or minutes variable to use
depending on which instance of the class we have called the method on.

1 getminutes returns an int, setminutes is specified as void to state that it has nothing to return, etc.

Well House Consultants Samples Objects and Classes 737

Chapter 54

Exercise

You're going to be working with vehicles (cars, buses, train carriages etc.). Create a class of type Vehicle with three parameters
– a String for the owner's name, the number of passengers it can take, and the maximum speed it can travel. Also write some get
methods to let you retrieve data.

Write a test program in which you create three Vehicles – a car with a maximum capacity of five and a top speed of 70 m.p.h, a
railway carriage with a maximum capacity of 45 and a top speed of 120 miles per hour, and a bus with a capacity of 51 and a top
speed of 55 m.p.h.

You have 30 people to convey 100 miles. How long is it going to take you to do that with your train carriage, and how long would
it take you with your bus?

738 Objects and Classes Well House Consultants, Ltd.

J706

54.3 Enhancements to the basic class structure

Class or static methods

How many films do we have? In our example, we had two but it's not immediately
obvious how we could find that out from a method call to the class. We need a new
type of variable or method – a class variable or method, which applies to the class as
a whole and not to any particular instance of the class. Such variables and methods
are referred to as static, since Java always uses the same variable or method no
matter which member of the class they're called on, or indeed if they're called on the
class as a whole.

Direct variable access

It can be a real pain to have to write get and set methods for every property, so
Java allows you to directly access the variables that relate to each instance of a class,
provided that they have open enough privileges.1

Object oriented design purists may not be thrilled about this, feeling that every-
thing should be done through a method. In practical use it works fine, and if you're
particularly concerned you can declare variables private rather than public which will
stop any users in their tracks.

this

Very often, you'll want to give a parameter the same variable name as a variable in
the current instance of your class; our earlier example was somewhat fiddled when we
wrote:
 public Film (String title, int length) {
 called = title;
 minutes = length;
 }

as it would have been much cleaner if we had been able to use the word "title" for
both the parameter and the internal variable within the instance.

If we declare a parameter with the same name as such an instance variable, then
any references we make will be to the parameter. We can force Java to use the instance
variable by writing "this" in front of the variable name when appropriate.

Overloading

Important to note: In Java, when you

call a method you must get the number

and type of parameters correct.

In Java, when you call a method you must get the number and type of parameters
correct; it's not just the name that identifies the method, but the name and the param-
eter list. This means that you can write more than one method with the same name,
very useful if you want to have a method which you specify "short" and leave it to
default the final parameter(s). This can be done equally well with the constructor,
static or dynamic methods.

An example

We've modified our earlier example to include all the extra facilities that we've
talked about since the last exercise – static methods and variables, this, overloading,
and direct access to variables. Here's the object class (now called "Film2"):

public class Film2{

 String called;

 public int minutes;

 static int count = 0;

1 that word "public" that we've been using is more than enough!

Well House Consultants Samples Objects and Classes 739

Chapter 54

 public Film2 (String called, int minutes) {

 filmset(called, minutes);

 }

 public Film2 (String called) {

 filmset(called, 125);

 }

 private void filmset(String called, int minutes) {

 this.called = called;

 this.minutes = minutes;

 count++;

 }

 public String getcalled() {

 return called;

 }

 public void setminutes(int length) {

 minutes = length;

 }

 public static int getcount() {

 return count;

 }

 }

740 Objects and Classes Well House Consultants, Ltd.

J706

Here's our test harness:

public class Eve2 {

 public static void main(String [] args) {

 // Set up two film objects

 Film2 Kids;

 Film2 Adults;

 Kids = new Film2("Shrek");

 Adults = new Film2("Road to Perdition",117);

 System.out.println("The kids are watching "+

 Kids.getcalled());

 System.out.println("The big kids are watching "+

 Adults.getcalled());

 int before = Kids.minutes - Adults.minutes;

 System.out.println("The adults will be through "+

 before+ " minutes ahead");

 System.out.println("You have a total of " +

 Film2.getcount() + " films");

 }

}

And here's the result from running it:

Figure 298 Running public class Eve2
bash-2.04$ java Eve2

The kids are watching Shrek

The big kids are watching Road to Perdition

The adults will be through 8 minutes ahead

You have a total of 2 films

bash-2.04$

Well House Consultants Samples Objects and Classes 741

Chapter 54

54.4 Naming conventions

It's common practice to use different capitalisation standards to differentiate
between primitive and object variables, and the names of methods.

Primitive variables are usually written all lowercase.
Important to note: Primitive variables

are usually written all lowercase. Classes

and object variables start with an upper-

case letter, and are then continue in

lowercase. Method names start with a

lowercase letter, but have capitals for

the start of each intermediate word in

the method name.

Classes and object variables start with an uppercase letter, and are then continue
in lowercase.

Method names start with a lowercase letter, but have capitals for the start of each
intermediate word in the method name. Examples:

 numberofobjects primitive
 Numberofobjects object
 numberOfObjects method

742 Objects and Classes Well House Consultants, Ltd.

J706

Exercise

Modify your vehicle class so that you can call a method to ask how many seats (in total) you have created, and test that method
by adding a total seat report to the test harness.

Add in a second constructor that takes no parameters at all; if you call up a vehicle and don't specify anything, it's to be a car
with four seats, top speed 70 m.p.h. and have an "unknown" owner.

	Objects and Classes
	54.1 Using an instance of a class
	54.2 Writing your own class
	54.3 Enhancements to the basic class structure
	54.4 Naming conventions

